60,112 research outputs found
Hybrid copula mixed models for combining case-control and cohort studies in meta-analysis of diagnostic tests
Copula mixed models for trivariate (or bivariate) meta-analysis of diagnostic test accuracy studies accounting (or not) for disease prevalence have been proposed in the biostatistics literature to synthesize information. However, many systematic reviews often include case-control and cohort studies, so one can either focus on the bivariate meta-analysis of the case-control studies or the trivariate meta-analysis of the cohort studies, as only the latter contains information on disease prevalence. In order to remedy this situation of wasting data we propose a hybrid copula mixed model via a combination of the bivariate and trivariate copula mixed model for the data from the case-control studies and cohort studies, respectively. Hence, this hybrid model can account for study design and also due to its generality can deal with dependence in the joint tails. We apply the proposed hybrid copula mixed model to a review of the performance of contemporary diagnostic imaging modalities for detecting metastases in patients with melanoma
Boundedness of Pseudodifferential Operators on Banach Function Spaces
We show that if the Hardy-Littlewood maximal operator is bounded on a
separable Banach function space and on its associate space
, then a pseudodifferential operator
is bounded on whenever the symbol belongs to the
H\"ormander class with ,
or to the the Miyachi class
with ,
. This result is applied to the case of
variable Lebesgue spaces .Comment: To appear in a special volume of Operator Theory: Advances and
Applications dedicated to Ant\'onio Ferreira dos Santo
Recommended from our members
Electron quantum interference in epitaxial antiferromagnetic NiO thin films
The electron reflectivity from NiO thin films grown on Ag(001) has been systematically studied as a function of film thickness and electron energy. A strong electron quantum interference effect was observed from the NiO film, which is used to derive the unoccupied band dispersion above the Fermi surface along the Γ-X direction using the phase accumulation model. The experimental bands agree well with first-principles calculations. A weaker electron quantum interference effect was also observed from the CoO film
Active interoceptive inference and the emotional brain
We review a recent shift in conceptions of interoception and its relationship to hierarchical inference in the brain. The notion of interoceptive inference means that bodily states are regulated by autonomic reflexes that are enslaved by descending predictions from deep generative models of our internal and external milieu. This re-conceptualization illuminates several issues in cognitive and clinical neuroscience with implications for experiences of selfhood and emotion. We first contextualize interoception in terms of active (Bayesian) inference in the brain, highlighting its enactivist (embodied) aspects. We then consider the key role of uncertainty or precision and how this might translate into neuromodulation. We next examine the implications for understanding the functional anatomy of the emotional brain, surveying recent observations on agranular cortex. Finally, we turn to theoretical issues, namely, the role of interoception in shaping a sense of embodied self and feelings. We will draw links between physiological homoeostasis and allostasis, early cybernetic ideas of predictive control and hierarchical generative models in predictive processing. The explanatory scope of interoceptive inference ranges from explanations for autism and depression, through to consciousness. We offer a brief survey of these exciting developments
A Mechanical Mass Sensor with Yoctogram Resolution
Nanoelectromechanical systems (NEMS) have generated considerable interest as
inertial mass sensors. NEMS resonators have been used to weigh cells,
biomolecules, and gas molecules, creating many new possibilities for biological
and chemical analysis [1-4]. Recently, NEMS-based mass sensors have been
employed as a new tool in surface science in order to study e.g. the phase
transitions or the diffusion of adsorbed atoms on nanoscale objects [5-7]. A
key point in all these experiments is the ability to resolve small masses. Here
we report on mass sensing experiments with a resolution of 1.7 yg (1 yg =
10^-24 g), which corresponds to the mass of one proton, or one hydrogen atom.
The resonator is made of a ~150 nm long carbon nanotube resonator vibrating at
nearly 2 GHz. The unprecedented level of sensitivity allows us to detect
adsorption events of naphthalene molecules (C10H8) and to measure the binding
energy of a Xe atom on the nanotube surface (131 meV). These ultrasensitive
nanotube resonators offer new opportunities for mass spectrometry,
magnetometry, and adsorption experiments.Comment: submitted version of the manuscrip
Behavioral implications of shortlisting procedures
We consider two-stage “shortlisting procedures” in which the menu of alternatives is first pruned by some process or criterion and then a binary relation is maximized. Given a particular first-stage process, our main result supplies a necessary and sufficient condition for choice data to be consistent with a procedure in the designated class. This result applies to any class of procedures with a certain lattice structure, including the cases of “consideration filters,” “satisficing with salience effects,” and “rational shortlist methods.” The theory avoids background assumptions made for mathematical convenience; in this and other respects following Richter’s classical analysis of preference-maximizing choice in the absence of shortlisting
Giant half-cycle attosecond pulses
Half-cycle picosecond pulses have been produced from thin photo-conductors,
when applying an electric field across the surface and switching on conduction
by a short laser pulse. Then the transverse current in the wafer plane emits
half-cycle pulses in normal direction, and pulses of 500 fs duration and 1e6
V/m peak electric field have been observed. Here we show that single half-cycle
pulses of 50 as duration and up to 1e13 V/m can be produced when irradiating a
double foil target by intense few-cycle laser pulses. Focused onto an
ultra-thin foil, all electrons are blown out, forming a uniform sheet of
relativistic electrons. A second layer, placed at some distance behind,
reflects the drive beam, but lets electrons pass straight. Under oblique
incidence, beam reflection provides the transverse current, which emits intense
half-cycle pulses. Such a pulse may completely ionize even heavier atoms. New
types of attosecond pump-probe experiments will become possible.Comment: 5 pages, 4 figures, to be presented at LEI2011-Light at Extreme
Intensities and China-Germany Symposium on Laser Acceleratio
Solving -means on High-dimensional Big Data
In recent years, there have been major efforts to develop data stream
algorithms that process inputs in one pass over the data with little memory
requirement. For the -means problem, this has led to the development of
several -approximations (under the assumption that is a
constant), but also to the design of algorithms that are extremely fast in
practice and compute solutions of high accuracy. However, when not only the
length of the stream is high but also the dimensionality of the input points,
then current methods reach their limits.
We propose two algorithms, piecy and piecy-mr that are based on the recently
developed data stream algorithm BICO that can process high dimensional data in
one pass and output a solution of high quality. While piecy is suited for high
dimensional data with a medium number of points, piecy-mr is meant for high
dimensional data that comes in a very long stream. We provide an extensive
experimental study to evaluate piecy and piecy-mr that shows the strength of
the new algorithms.Comment: 23 pages, 9 figures, published at the 14th International Symposium on
Experimental Algorithms - SEA 201
Complete Anatomy of B -> K*ll and its angular distribution
We present a complete and optimal set of observables for the exclusive 4-body
B meson decay B -> K*(->K pi) l+l- in the low dilepton mass region, that
contains a maximal number of clean observables. This basis of observables is
built in a systematic way. We show that all the previously defined observables
and any observable that one can construct, can be expressed as a function of
this basis. This set of observables contains all the information that can be
extracted from the angular distribution in the cleanest possible way. We
provide explicit expressions for the full and the uniangular distributions in
terms of this basis. The conclusions presented here can be easily extended to
the large-q^2 region. We study the sensitivity of the observables to
right-handed currents and scalars. Finally, we present for the first time all
the symmetries of the full distribution including massive terms and scalar
contributions.Comment: 37 pages, 12 Figures. Corrected typo in Eqs. (29) and (44). Results
and conclusions unchange
- …