1,520 research outputs found

    Rudder Gap Flow Control for Cavitation Suppression

    Full text link
    For the suppression of rudder cavitation, especially within and around the gap between the stationary and movable parts, flow control devices were developed. In the present study, both experimental and computational analyses of the flow control devices were carried out. The new rudder system is equipped with cam devices, which effectively close the gap between the stationary horn/pintle and movable flaps. Model scale experiments of surface pressure measurements, flow field visualization near the gap using PIV, and cavitation behavior observation were conducted in a cavitation tunnel. The experiments were simulated using a computational fluid dynamics tool and the results are compared for validation. It is confirmed that the flow control devices effectively suppresses the rudder gap cavitation and, at the same time, augments lifthttp://deepblue.lib.umich.edu/bitstream/2027.42/84266/1/CAV2009-final70.pd

    Interplay between carrier and impurity concentrations in annealed Ga1−x_{1-x}Mnx_{x}As intrinsic anomalous Hall Effect

    Get PDF
    Investigating the scaling behavior of annealed Ga1−x_{1-x}Mnx_{x}As anomalous Hall coefficients, we note a universal crossover regime where the scaling behavior changes from quadratic to linear, attributed to the anomalous Hall Effect intrinsic and extrinsic origins, respectively. Furthermore, measured anomalous Hall conductivities when properly scaled by carrier concentration remain constant, equal to theoretically predicated values, spanning nearly a decade in conductivity as well as over 100 K in TC_{C}. Both the qualitative and quantitative agreement confirms the validity of new equations of motion including the Berry phase contributions as well as tunablility of the intrinsic anomalous Hall Effect.Comment: 4 pages, 5 figure

    Local potential fluctuation of topological surface states in Bi1.5Sb0.5Te1.7Se1.3 observed by Landau level spectroscopy

    Get PDF
    We report the local observation of the band structure of topological surface states in Bi1.5Sb0.5Te1.7Se1.3 using scanning tunneling microscopy/spectroscopy (STM/STS). The energy-momentum dispersion relation is locally deduced by extracting the Landau level (LL) energies, which are formed in a high magnetic field, from the STS data. Spatial variation of LLs revealed a shift of the Dirac point energy at the nanometer scale. The structure of the potential fluctuation was not correlated with the topography, which indicated that the Te/Se substitution did not induce the potential shift because of their same valence. The results show that disorders from the Te/Se substitution at the surface do not induce any localized charged states and do not affect topological surface states. (C) 2016 AIP Publishing LLC.open114sciescopu

    Clinical management of cutaneous adverse events in patients on targeted anticancer therapies and immunotherapies: a national consensus statement by the Spanish Academy of Dermatology and Venereology and the Spanish Society of Medical Oncology

    Get PDF
    Progress in the understanding of many tumors has enabled the development of new therapies, such as those targeted at specific molecules involved in cell growth (targeted therapies) or intended to modulate the immune system (immunotherapy). However, along with the clinical benefit provided by these new treatments, new adverse effects have also appeared. Dermatological toxicities such as papulopustular eruptions, xerosis, and pruritus are common with EGFR inhibitors. Other adverse effects have also been described with PDGFR, BCR-ABL, and MAPK tyrosine kinase inhibitors, antiangiogenic drugs, and inhibitors at immune checkpoints such as CTLA-4 and PD-1/PD-L1. Onset of these adverse effects often causes dose reductions and/or delays in administering the prescribed therapy, which can affect patient survival and quality of life. It is, therefore, important to prevent the occurrence of these adverse effects, or to treat unavoidable ones as soon as possible. This requires cooperation between medical oncologists and dermatologists. This article reviews the various dermatological toxicities associated with targeted therapies and immunotherapies, along with their diagnosis and therapeutic management

    Platinum Assisted Vapor–Liquid–Solid Growth of Er–Si Nanowires and Their Optical Properties

    Get PDF
    We report the optical activation of erbium coated silicon nanowires (Er–SiNWs) grown with the assist of platinum (Pt) and gold (Au), respectively. The NWs were grown on Si substrates by using a chemical vapor transport process using SiCl4 and ErCl4 as precursors. Pt as well as Au worked successfully as vapor–liquid–solid (VLS) catalysts for growing SiNWs with diameters of ~100 nm and length of several micrometers, respectively. The SiNWs have core–shell structures where the Er-crystalline layer is sandwiched between silica layers. Photoluminescence spectra analyses showed the optical activity of SiNWs from both Pt and Au. A stronger Er3+ luminescence of 1,534 nm was observed from the SiNWs with Pt at room- and low-temperature (25 K) using the 488- and/or 477-nm line of an Ar laser that may be due to the uniform incorporation of more Er ions into NWs with the exclusion of the formation of catalyst-induced deep levels in the band-gap. Pt would be used as a VLS catalyst for high performance optically active Er–SiNWs

    The demographics of galactic bulges in the SDSS database

    Get PDF
    We present a new database of our two-dimensional bulge–disk decompositions for 14,233 galaxies drawn from Sloan Digital Sky Survey DR12 in order to examine the properties of bulges residing in the local universe (0.005 < z < 0.05). We performed decompositions in the g and r bands by utilizing the galfit software. The bulge colors and bulge-to-total ratios are found to be sensitive to the details in the decomposition technique, and hence we hereby provide full details of our method. The g − r colors of bulges derived are almost constantly red regardless of bulge size, except for the bulges in the low bulge-to-total ratio galaxies (B/T r lesssim 0.3). Bulges exhibit similar scaling relations to those followed by elliptical galaxies, but the bulges in galaxies with lower bulge-to-total ratios clearly show a gradually larger departure in slope from the elliptical galaxy sequence. The scatters around the scaling relations are also larger for the bulges in galaxies with lower bulge-to-total ratios. Both the departure in slopes and larger scatters likely originate from the presence of young stars. The bulges in galaxies with low bulge-to-total ratios show signs of a frosting of young stars so substantial that their luminosity-weighted Balmer-line ages are as small as 1 Gyr in some cases. While bulges seem largely similar in optical properties to elliptical galaxies, they do show clear and systematic departures as a function of bulge-to-total ratio. The stellar properties and perhaps associated formation processes of bulges seem much more diverse than those of elliptical galaxies

    An Integrated-Photonics Optical-Frequency Synthesizer

    Full text link
    Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability much beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the 7.0∗10−137.0*10^{-13} reference-clock instability for a 1 second acquisition, and constrain any synthesis error to 7.7∗10−157.7*10^{-15} while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.Comment: 10 pages, 6 figure

    Measurement of the diffractive structure function in deep inelastic scattering at HERA

    Full text link
    This paper presents an analysis of the inclusive properties of diffractive deep inelastic scattering events produced in epep interactions at HERA. The events are characterised by a rapidity gap between the outgoing proton system and the remaining hadronic system. Inclusive distributions are presented and compared with Monte Carlo models for diffractive processes. The data are consistent with models where the pomeron structure function has a hard and a soft contribution. The diffractive structure function is measured as a function of \xpom, the momentum fraction lost by the proton, of ÎČ\beta, the momentum fraction of the struck quark with respect to \xpom, and of Q2Q^2. The \xpom dependence is consistent with the form \xpoma where a = 1.30 ± 0.08 (stat) − 0.14+ 0.08 (sys)a~=~1.30~\pm~0.08~(stat)~^{+~0.08}_{-~0.14}~(sys) in all bins of ÎČ\beta and Q2Q^2. In the measured Q2Q^2 range, the diffractive structure function approximately scales with Q2Q^2 at fixed ÎČ\beta. In an Ingelman-Schlein type model, where commonly used pomeron flux factor normalisations are assumed, it is found that the quarks within the pomeron do not saturate the momentum sum rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil
    • 

    corecore