4,709 research outputs found

    Incoherent dynamics in neutron-matter interaction

    Get PDF
    Coherent and incoherent neutron-matter interaction is studied inside a recently introduced approach to subdynamics of a macrosystem. The equation describing the interaction is of the Lindblad type and using the Fermi pseudopotential we show that the commutator term is an optical potential leading to well-known relations in neutron optics. The other terms, usually ignored in optical descriptions and linked to the dynamic structure function of the medium, give an incoherent contribution to the dynamics, which keeps diffuse scattering and attenuation of the coherent beam into account, thus warranting fulfilment of the optical theorem. The relevance of this analysis to experiments in neutron interferometry is briefly discussed.Comment: 15 pages, revtex, no figures, to appear in Phys. Rev.

    Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet

    Full text link
    Ruthenium compounds play prominent roles in materials research ranging from oxide electronics to catalysis, and serve as a platform for fundamental concepts such as spin-triplet superconductivity, Kitaev spin-liquids, and solid-state analogues of the Higgs mode in particle physics. However, basic questions about the electronic structure of ruthenates remain unanswered, because several key parameters (including the Hund's-rule, spin-orbit, and exchange interactions) are comparable in magnitude, and their interplay is poorly understood - partly due to difficulties in synthesizing sizable single crystals for spectroscopic experiments. Here we introduce a resonant inelastic x-ray scattering (RIXS) technique capable of probing collective modes in microcrystals of 4d4d-electron materials. We present a comprehensive set of data on spin waves and spin-state transitions in the honeycomb antiferromagnet SrRu2_{2}O6_{6}, which possesses an unusually high N\'eel temperature. The new RIXS method provides fresh insight into the unconventional magnetism of SrRu2_{2}O6_{6}, and enables momentum-resolved spectroscopy of a large class of 4d4d transition-metal compounds.Comment: The original submitted version of the published manuscript. https://www.nature.com/articles/s41563-019-0327-

    Extravehicular activities limitations study. Volume 1: Physiological limitations to extravehicular activity in space

    Get PDF
    This report contains the results of a comprehensive literature search on physiological aspects of EVA. Specifically, the topics covered are: (1) Oxygen levels; (2) Optimum EVA work; (3) Food and Water; (4) Carbon dioxide levels; (5) Repetitive decompressions; (6) Thermal, and (7) Urine collection. The literature was assessed on each of these topics, followed by statements on conclusions and recommended future research needs

    Evaluation of the Effects of a Plasma Activated Medium on Cancer Cells

    Get PDF
    The interaction of low temperature plasma with liquids is a relevant topic of study to the field of plasma medicine. This is because cells and tissues are normally surrounded or covered by biological fluids. Therefore, the chemistry induced by the plasma in the aqueous state becomes crucial and usually dictates the biological outcomes. This process became even more important after the discovery that plasma activated media can be useful in killing various cancer cell lines. Here, we report on the measurements of concentrations of hydrogen peroxide, a species known to have strong biological effects, produced by application of plasma to a minimum essential culture medium. The activated medium is then used to treat SCaBER cancer cells. Results indicate that the plasma activated medium can kill the cancer cells in a dose dependent manner, retain its killing effect for several hours, and is as effective as apoptosis inducing drugs

    Neutron optical beam splitter from holographically structured nanoparticle-polymer composites

    Full text link
    We report a breakthrough in the search for versatile diffractive elements for cold neutrons. Nanoparticles are spatially arranged by holographical means in a photopolymer. These grating structures show remarkably efficient diffraction of cold neutrons up to about 50% for effective thicknesses of only 200 micron. They open up a profound perspective for next generation neutron-optical devices with the capability to tune or modulate the neutron diffraction efficiency.Comment: 4 pages, 2 figure

    Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings

    Full text link
    We report on successful tests of holographically arranged grating-structures in nanoparticle-polymer composites in the form of 100 microns thin free-standing films, i.e. without sample containers or covers that could cause unwanted absorption/incoherent scattering of very-cold neutrons. Despite their large diameter of 2 cm, the flexible materials are of high optical quality and yield mirror-like reflectivity of about 90% for neutrons of 4.1 nm wavelength

    High cooperativity coupling of electron-spin ensembles to superconducting cavities

    Full text link
    Electron spins in solids are promising candidates for quantum memories for superconducting qubits because they can have long coherence times, large collective couplings, and many quantum bits can be encoded into the spin-waves of a single ensemble. We demonstrate the coupling of electron spin ensembles to a superconducting transmission-line resonator at coupling strengths greatly exceeding the cavity decay rate and comparable to spin linewidth. We also use the enhanced coupling afforded by the small cross-section of the transmission line to perform broadband spectroscopy of ruby at millikelvin temperatures at low powers. In addition, we observe hyperfine structure in diamond P1 centers and time domain saturation-relaxation of the spins.Comment: 4pgs, 4 figure

    Thermocurrents and their Role in high Q Cavity Performance

    Full text link
    Over the past years it became evident that the quality factor of a superconducting cavity is not only determined by its surface preparation procedure, but is also influenced by the way the cavity is cooled down. Moreover, different data sets exists, some of them indicate that a slow cool-down through the critical temperature is favourable while other data states the exact opposite. Even so there where speculations and some models about the role of thermo-currents and flux-pinning, the difference in behaviour remained a mystery. In this paper we will for the first time present a consistent theoretical model which we confirmed by data that describes the role of thermo-currents, driven by temperature gradients and material transitions. We will clearly show how they impact the quality factor of a cavity, discuss our findings, relate it to findings at other labs and develop mitigation strategies which especially addresses the issue of achieving high quality factors of so-called nitrogen doped cavities in horizontal test
    • …
    corecore