206 research outputs found

    Precursor-mediated crystallization process in suspensions of hard spheres

    Full text link
    We report on a large scale computer simulation study of crystal nucleation in hard spheres. Through a combined analysis of real and reciprocal space data, a picture of a two-step crystallization process is supported: First dense, amorphous clusters form which then act as precursors for the nucleation of well-ordered crystallites. This kind of crystallization process has been previously observed in systems that interact via potentials that have an attractive as well as a repulsive part, most prominently in protein solutions. In this context the effect has been attributed to the presence of metastable fluid-fluid demixing. Our simulations, however, show that a purely repulsive system (that has no metastable fluid-fluid coexistence) crystallizes via the same mechanism.Comment: 4 figure

    Tension and stiffness of the hard sphere crystal-fluid interface

    Full text link
    A combination of fundamental measure density functional theory and Monte Carlo computer simulation is used to determine the orientation-resolved interfacial tension and stiffness for the equilibrium hard-sphere crystal-fluid interface. Microscopic density functional theory is in quantitative agreement with simulations and predicts a tension of 0.66 kT/\sigma^2 with a small anisotropy of about 0.025 kT and stiffnesses with e.g. 0.53 kT/\sigma^2 for the (001) orientation and 1.03 kT/\sigma^2 for the (111) orientation. Here kT is denoting the thermal energy and \sigma the hard sphere diameter. We compare our results with existing experimental findings

    Production Processes as a Tool to Study Parameterizations of Quark Confinement

    Get PDF
    We introduce diquarks as separable correlations in the two-quark Green's function to facilitate the description of baryons as relativistic three-quark bound states. These states then emerge as solutions of Bethe-Salpeter equations for quarks and diquarks that interact via quark exchange. When solving these equations we consider various dressing functions for the free quark and diquark propagators that prohibit the existence of corresponding asymptotic states and thus effectively parameterize confinement. We study the implications of qualitatively different dressing functions on the model predictions for the masses of the octet baryons as well as the electromagnetic and strong form factors of the nucleon. For different dressing functions we in particular compare the predictions for kaon photoproduction, γpKΛ\gamma p\to K\Lambda, and associated strangeness production, pppKΛpp\to pK\Lambda with experimental data. This leads to conclusions on the permissibility of different dressing functions.Comment: 43 pages, Latex, 28 eps files included via epsfig; version to be published in Physical Review

    Collective dynamics of colloids at fluid interfaces

    Full text link
    The evolution of an initially prepared distribution of micron sized colloidal particles, trapped at a fluid interface and under the action of their mutual capillary attraction, is analyzed by using Brownian dynamics simulations. At a separation \lambda\ given by the capillary length of typically 1 mm, the distance dependence of this attraction exhibits a crossover from a logarithmic decay, formally analogous to two-dimensional gravity, to an exponential decay. We discuss in detail the adaption of a particle-mesh algorithm, as used in cosmological simulations to study structure formation due to gravitational collapse, to the present colloidal problem. These simulations confirm the predictions, as far as available, of a mean-field theory developed previously for this problem. The evolution is monitored by quantitative characteristics which are particularly sensitive to the formation of highly inhomogeneous structures. Upon increasing \lambda\ the dynamics show a smooth transition from the spinodal decomposition expected for a simple fluid with short-ranged attraction to the self-gravitational collapse scenario.Comment: 13 pages, 12 figures, revised, matches version accepted for publication in the European Physical Journal

    Mesons in a Poincare Covariant Bethe-Salpeter Approach

    Get PDF
    We develop a covariant approach to describe the low-lying scalar, pseudoscalar, vector and axialvector mesons as quark-antiquark bound states. This approach is based on an effective interaction modeling of the non--perturbative structure of the gluon propagator that enters the quark Schwinger-Dyson and meson Bethe-Salpeter equations. We consistently treat these integral equations by precisely implementing the quark propagator functions that solve the Schwinger-Dyson equations into the Bethe-Salpeter equations in the relevant kinematical region. We extract the meson masses and compute the pion and kaon decay constants. We obtain a quantitatively correct description for pions, kaons and vector mesons while the calculated spectra of scalar and axialvector mesons suggest that their structure is more complex than being quark-antiquark bound states.Comment: 18 pages LaTeX, 5 figures; some changes in the presentation, new results on axial vector mesons in enlarged mixing scheme; version to be published in Physical Review

    Effective interactions of colloids on nematic films

    Get PDF
    The elastic and capillary interactions between a pair of colloidal particles trapped on top of a nematic film are studied theoretically for large separations dd. The elastic interaction is repulsive and of quadrupolar type, varying as d5d^{-5}. For macroscopically thick films, the capillary interaction is likewise repulsive and proportional to d5d^{-5} as a consequence of mechanical isolation of the system comprised of the colloids and the interface. A finite film thickness introduces a nonvanishing force on the system (exerted by the substrate supporting the film) leading to logarithmically varying capillary attractions. However, their strength turns out to be too small to be of importance for the recently observed pattern formation of colloidal droplets on nematic films.Comment: 13 pages, accepted by EPJ

    Free energy of colloidal particles at the surface of sessile drops

    Full text link
    The influence of finite system size on the free energy of a spherical particle floating at the surface of a sessile droplet is studied both analytically and numerically. In the special case that the contact angle at the substrate equals π/2\pi/2 a capillary analogue of the method of images is applied in order to calculate small deformations of the droplet shape if an external force is applied to the particle. The type of boundary conditions for the droplet shape at the substrate determines the sign of the capillary monopole associated with the image particle. Therefore, the free energy of the particle, which is proportional to the interaction energy of the original particle with its image, can be of either sign, too. The analytic solutions, given by the Green's function of the capillary equation, are constructed such that the condition of the forces acting on the droplet being balanced and of the volume constraint are fulfilled. Besides the known phenomena of attraction of a particle to a free contact line and repulsion from a pinned one, we observe a local free energy minimum for the particle being located at the drop apex or at an intermediate angle, respectively. This peculiarity can be traced back to a non-monotonic behavior of the Green's function, which reflects the interplay between the deformations of the droplet shape and the volume constraint.Comment: 24 pages, 19 figure

    Hard sphere fluids confined between soft repulsive walls: A comparative study using Monte Carlo and density functional methods

    Full text link
    Hard-sphere fluids confined between parallel plates a distance DD apart are studied for a wide range of packing fractions, including also the onset of crystallization, applying Monte Carlo simulation techniques and density functional theory. The walls repel the hard spheres (of diameter σ\sigma) with a Weeks-Chandler-Andersen (WCA) potential VWCA(z)=4ϵ[(σw/z)12(σw/z)6+1/4]V_{WCA}(z) = 4 \epsilon [(\sigma_w/z)^{12}-(\sigma_w/z)^6 + 1/4], with range σw=σ/2\sigma_w = \sigma/2. We vary the strength ϵ\epsilon over a wide range and the case of simple hard walls is also treated for comparison. By the variation of ϵ\epsilon one can change both the surface excess packing fraction and the wall-fluid (γwf)(\gamma_{wf}) and wall-crystal (γwc)(\gamma_{wc}) surface free energies. Several different methods to extract γwf\gamma_{wf} and γwc\gamma_{wc} from Monte Carlo (MC) simulations are implemented, and their accuracy and efficiency is comparatively discussed. The density functional theory (DFT) using Fundamental Measure functionals is found to be quantitatively accurate over a wide range of packing fractions; small deviations between DFT and MC near the fluid to crystal transition need to be studied further. Our results on density profiles near soft walls could be useful to interpret corresponding experiments with suitable colloidal dispersions.Comment: 23 pages, 7 ps, eps figure

    Bethe-Salpeter equation and a nonperturbative quark-gluon vertex

    Get PDF
    A Ward-Takahashi identity preserving Bethe-Salpeter kernel can always be calculated explicitly from a dressed-quark-gluon vertex whose diagrammatic content is enumerable. We illustrate that fact using a vertex obtained via the complete resummation of dressed-gluon ladders. While this vertex is planar, the vertex-consistent kernel is nonplanar and that is true for any dressed vertex. In an exemplifying model the rainbow-ladder truncation of the gap and Bethe-Salpeter equations yields many results; e.g., pi- and rho-meson masses, that are changed little by including higher-order corrections. Repulsion generated by nonplanar diagrams in the vertex-consistent Bethe-Salpeter kernel for quark-quark scattering is sufficient to guarantee that diquark bound states do not exist.Comment: 16 pages, 12 figures, REVTEX

    Sigma Terms of Light-Quark Hadrons

    Full text link
    A calculation of the current-quark mass dependence of hadron masses can help in using observational data to place constraints on the variation of nature's fundamental parameters. A hadron's sigma-term is a measure of this dependence. The connection between a hadron's sigma-term and the Feynman-Hellmann theorem is illustrated with an explicit calculation for the pion using a rainbow-ladder truncation of the Dyson-Schwinger equations: in the vicinity of the chiral limit sigma_pi = m_pi/2. This truncation also provides a decent estimate of sigma_rho because the two dominant self-energy corrections to the rho-meson's mass largely cancel in their contribution to sigma_rho. The truncation is less accurate for the omega, however, because there is little to compete with an omega->rho+pi self-energy contribution that magnifies the value of sigma_omega by ~25%. A Poincare' covariant Faddeev equation, which describes baryons as composites of confined-quarks and -nonpointlike-diquarks, is solved to obtain the current-quark mass dependence of the masses of the nucleon and Delta, and thereby sigma_N and sigma_Delta. This "quark-core" piece is augmented by the "pion cloud" contribution, which is positive. The analysis yields sigma_N~60MeV and sigma_Delta~50MeV.Comment: 22 pages, reference list expande
    corecore