327 research outputs found

    Near threshold eta meson production in the d+d->alpha+eta reaction

    Full text link
    The d+d->alpha+eta reaction has been investigated near threshold using the ANKE facility at COSY-Juelich. Both total and differential cross sections have been measured at two excess energies, Q=2.6 MeV and 7.7 MeV, with a subthreshold measurement being undertaken at Q=-2.6 MeV to study the physical background. While consistent with isotropy at the lower energy, the angular distribution reveals a pronounced anisotropy at the higher one, indicating the presence of higher partial waves. Options for the decomposition into partial amplitudes and their consequences for determination of the s-wave eta-alpha scattering length are discussed.Comment: 8pp, fig.3 added, normalisation in eq.4.1 correcte

    The Near-Threshold Production of Phi Mesons in pp Collisions

    Get PDF
    The pp->pp phi reaction has been studied at the Cooler Synchrotron COSY-Juelich, using the internal beam and ANKE facility. Total cross sections have been determined at three excess energies epsilon near the production threshold. The differential cross section closest to threshold at epsilon=18.5 MeV exhibits a clear S-wave dominance as well as a noticeable effect due to the proton-proton final state interaction. Taken together with data for pp omega-production, a significant enhancement of the phi/omega ratio of a factor 8 is found compared to predictions based on the Okubo-Zweig-Iizuka rule.Comment: 4 Pages, 3 Figures, 1 Table, submitted to Phys. Rev. Let

    Kaon Pair Production in Proton--Proton Collisions

    Get PDF
    The differential and total cross sections for kaon pair production in the pp->ppK+K- reaction have been measured at three beam energies of 2.65, 2.70, and 2.83 GeV using the ANKE magnetic spectrometer at the COSY-Juelich accelerator. These near-threshold data are separated into pairs arising from the decay of the phi-meson and the remainder. For the non-phi selection, the ratio of the differential cross sections in terms of the K-p and K+p invariant masses is strongly peaked towards low masses. This effect can be described quantitatively by using a simple ansatz for the K-p final state interaction, where it is seen that the data are sensitive to the magnitude of an effective K-p scattering length. When allowance is made for a small number of phi events where the K- rescatters from the proton, the phi region is equally well described at all three energies. A very similar phenomenon is discovered in the ratio of the cross sections as functions of the K-pp and K+pp invariant masses and the identical final state interaction model is also very successful here. The world data on the energy dependence of the non-phi total cross section is also reproduced, except possibly for the results closest to threshold.Comment: 12 two-column pages, 12 figures, 1 tabl

    The production of K+K- pairs in proton-proton collisions at 2.83 GeV

    Get PDF
    Differential and total cross sections for the pp -> ppK+K- reaction have been measured at a proton beam energy of 2.83 GeV using the COSY-ANKE magnetic spectrometer. Detailed model descriptions fitted to a variety of one-dimensional distributions permit the separation of the pp -> pp phi cross section from that of non-phi production. The differential spectra show that higher partial waves represent the majority of the pp -> pp phi total cross section at an excess energy of 76 MeV, whose energy dependence would then seem to require some s-wave phi-p enhancement near threshold. The non-phi data can be described in terms of the combined effects of two-body final state interactions using the same effective scattering parameters determined from lower energy data.Comment: 12 pages, 12 figures, 3 table

    TVB-EduPack: An interactive learning and scripting platform for The Virtual Brain

    Get PDF
    The Virtual Brain (TVB; thevirtualbrain.org) is a neuroinformatics platform for full brain network simulation based on individual anatomical connectivity data. The framework addresses clinical and neuroscientific questions by simulating multi-scale neural dynamics that range from local population activity to large-scale brain function and related macroscopic signals like electroencephalography and functional magnetic resonance imaging. TVB is equipped with a graphical and a command-line interface to create models that capture the characteristic biological variability to predict the brain activity of individual subjects. To enable researchers from various backgrounds a quick start into TVB and brain network modeling in general, we developed an educational module: TVB-EduPack. EduPack offers two educational functionalities that seamlessly integrate into TVB's graphical user interface (GUI): (i) interactive tutorials introduce GUI elements, guide through the basic mechanics of software usage and develop complex use-case scenarios; animations, videos and textual descriptions transport essential principles of computational neuroscience and brain modeling; (ii) an automatic script generator records model parameters and produces input files for TVB's Python programming interface; thereby, simulation configurations can be exported as scripts that allow flexible customization of the modeling process and self-defined batch- and post-processing applications while benefitting from the full power of the Python language and its toolboxes. This article covers the implementation of TVB-EduPack and its integration into TVB architecture. Like TVB, EduPack is an open source community project that lives from the participation and contribution of its users. TVB-EduPack can be obtained as part of TVB from thevirtualbrain.org

    Determination of target thickness and luminosity from beam energy losses

    Full text link
    The repeated passage of a coasting ion beam of a storage ring through a thin target induces a shift in the revolution frequency due to the energy loss in the target. Since the frequency shift is proportional to the beam-target overlap, its measurement offers the possibility of determining the target thickness and hence the corresponding luminosity in an experiment. This effect has been investigated with an internal proton beam of energy 2.65 GeV at the COSY-J\"ulich accelerator using the ANKE spectrometer and a hydrogen cluster-jet target. Possible sources of error, especially those arising from the influence of residual gas in the ring, were carefully studied, resulting in a accuracy of better than 5%. The luminosity determined in this way was used, in conjunction with measurements in the ANKE forward detector, to determine the cross section for elastic proton-proton scattering. The result is compared to published data as well as to the predictions of a phase shift solution. The practicability and the limitations of the energy-loss method are discussed.Comment: 11 pages, 11 figure

    Mesons in Nuclei: eta and omega mesons

    Full text link
    Data on the photoproduction of omega mesons on nuclei have been re-analyzed in search for in-medium modifications. The data were taken with the Crystal Barrel(CB)/TAPS detector system at the ELSA accelerator facility in Bonn. The extracted omega line shape was found to be sensitive to the background subtraction. In experiments at the tagged photon facility of the Mainz MAMI accelerator photoproduction of mesons from light nuclear targets (deuteron and 3He) has been studied. The experiments used the combined Crystal Ball/TAPS setup in Mainz. Measurements of eta- and pi0-photoproduction off a liquid 3He-target have been used for the search for the formation of eta-mesic 3He. The installation of the WASA detector at COSY opened a unique possibility to search for the 4He-eta bound state with high statistics and high acceptance. We are conducting a search via an exclusive measurement of the excitation function for the dd -> 3He p pi- reaction.Comment: Proceedings of New Frontiers In QCD 2010: Exotic Hadron Systems And Dense Matter 18 Jan - 19 Mar 2010, Kyoto, Japa

    Measurement of the Analyzing Power in pd(pp)n\vec{p}d \to (pp)n \\with a Fast Forward 1S0^1S_0--Diproton

    Full text link
    A measurement of the analyzing power AyA_y of the pd(pp)+n\vec{p}d \to (pp) + n reaction was carried out at beam energies of 0.5 and 0.8 GeV by detection of a fast forward proton pair of small excitation energy Epp<3E_{pp} < 3 MeV. The kinematically complete experiment made use of the ANKE spectrometer at the internal beam of COSY and a deuterium cluster--jet target. For the first time the SS--wave dominance in the fast diproton is experimentally demonstrated in this reaction. While at Tp=0.8T_p=0.8 GeV the measured analyzing power AyA_y vanishes, it reaches almost unity at Tp=0.5T_p=0.5 GeV for neutrons scattered at θnc.m.=167\theta_n^{c.m.}=167^\circ. The results are compared with a model taking into account one--nucleon exchange, single scattering and Δ\Delta (1232) excitation in the intermediate state. The model describes fairly well the unpolarized cross section obtained earlier by us and the analyzing power at 0.8 GeV, it fails to reproduce the angular dependence of AyA_y at 0.5 GeV.Comment: 4 pages, 4 figures, 1 tabl
    corecore