2,084 research outputs found

    New insight into the physics of atmospheres of early type stars

    Get PDF
    The phenomenon of mass loss and stellar winds from hot stars are discussed. The mass loss rate of early type stars increases by about a factor of 100 to 1000 during their evolution. This seems incompatible with the radiation driven wind models and may require another explanation for the mass loss from early type stars. The winds of early type stars are strongly variable and the stars may go through active phases. Eclipses in binary systems by the stellar winds can be used to probe the winds. A few future IUE studies are suggested

    The Star Cluster Population of M51

    Full text link
    We present the age and mass distribution of star clusters in M51. The structural parameters are found by fitting cluster evolution models to the spectral energy distribution consisting of 8 HST-WFPC2 pass bands. There is evidence for a burst of cluster formation at the moment of the second encounter with the companion NGC5195 (50-100 Myr ago) and a hint for an earlier burst (400-500 Myr ago). The cluster IMF has a power law slope of -2.1. The disruption time of clusters is extremely short (< 100 Myr for a 10^4 Msun cluster).Comment: 2 pages, to appear in "The Formation and Evolution of Massive Young Star Clusters", 17-21 November 2003, Cancun (Mexico

    Theoretical and Observational Agreement on Mass Dependence of Cluster Life Times

    Full text link
    Observations and N-body simulations both support a simple relation for the disruption time of a cluster as a function of its mass of the form: t_dis = t_4 * (M/10^4 Msun)^gamma. The scaling factor t_4 seems to depend strongly on the environment. Predictions and observations show that gamma ~ 0.64 +/- 0.06. Assuming that t_dis ~ M^0.64 is caused by evaporation and shocking implies a relation between the radius and the mass of a cluster of the form: r_h ~ M^0.07, which has been observed in a few galaxies. The suggested relation for the disruption time implies that the lower mass end of the cluster initial mass function will be disrupted faster than the higher mass end, which is needed to evolve a young power law shaped mass function into the log-normal mass function of old (globular) clusters.Comment: 2 pages, to appear in "The Formation and Evolution of Massive Young Star Clusters", 17-21 November 2003, Cancun (Mexico

    Stagnation and Infall of Dense Clumps in the Stellar Wind of tau Scorpii

    Full text link
    Observations of the B0.2V star tau Scorpii have revealed unusual stellar wind characteristics: red-shifted absorption in the far-ultraviolet O VI resonance doublet up to +250 km/s, and extremely hard X-ray emission implying gas at temperatures in excess of 10^7 K. We describe a phenomenological model to explain these properties. We assume the wind of tau Sco consists of two components: ambient gas in which denser clumps are embedded. The clumps are optically thick in the UV resonance lines primarily responsible for accelerating the ambient wind. The reduced acceleration causes the clumps to slow and even infall, all the while being confined by the ram pressure of the outflowing ambient wind. We calculate detailed trajectories of the clumps in the ambient stellar wind, accounting for a line radiation driving force and the momentum deposited by the ambient wind in the form of drag. We show these clumps will fall back towards the star with velocities of several hundred km/sec for a broad range of initial conditions. The infalling clumps produce X-ray emitting plasmas with temperatures in excess of (1-6)x10^7 K in bow shocks at their leading edge. The infalling material explains the peculiar red-shifted absorption wings seen in the O VI doublet. The required mass loss in clumps is 3% - 30% ofthe total mass loss rate. The model developed here can be generally applied to line-driven outflows with clumps or density irregularities. (Abstract Abridged)Comment: To appear in the ApJ (1 May 2000). 24 pages, including 6 embedded figure

    Making information accessible for the conservation and use of biodiversity. A novel initiative to facilitate access to information and use of agricultural and tree biodiversity

    Get PDF
    Poster presented at Science Week 2014 - Bioversity International HQ, Rome (Italy), 24-27 Feb 201

    On the Interpretation of the Age Distribution of Star Clusters in the Small Magellanic Cloud

    Full text link
    We re-analyze the age distribution (dN/dt) of star clusters in the Small Magellanic Cloud (SMC) using age determinations based on the Magellanic Cloud Photometric Survey. For ages younger than 3x10^9 yr the dN/dt distribution can be approximated by a power-law distribution, dN/dt propto t^-beta, with -beta=-0.70+/-0.05 or -beta=-0.84+/-0.04, depending on the model used to derive the ages. Predictions for a cluster population without dissolution limited by a V-band detection result in a power-law dN/dt distribution with an index of ~-0.7. This is because the limiting cluster mass increases with age, due to evolutionary fading of clusters, reducing the number of observed clusters at old ages. When a mass cut well above the limiting cluster mass is applied, the dN/dt distribution is flat up to 1 Gyr. We conclude that cluster dissolution is of small importance in shaping the dN/dt distribution and incompleteness causes dN/dt to decline. The reason that no (mass independent) infant mortality of star clusters in the first ~10-20 Myr is found is explained by a detection bias towards clusters without nebular emission, i.e. cluster that have survived the infant mortality phase. The reason we find no evidence for tidal (mass dependent) cluster dissolution in the first Gyr is explained by the weak tidal field of the SMC. Our results are in sharp contrast to the interpretation of Chandar et al. (2006), who interpret the declining dN/dt distribution as rapid cluster dissolution. This is due to their erroneous assumption that the sample is limited by cluster mass, rather than luminosity.Comment: 8 pages, 4 figures, accepted for publication in Ap

    Constraining star cluster disruption mechanisms

    Full text link
    Star clusters are found in all sorts of environments and their formation and evolution is inextricably linked to the star formation process. Their eventual destruction can result from a number of factors at different times, but the process can be investigated as a whole through the study of the cluster age distribution. Observations of populous cluster samples reveal a distribution following a power law of index approximately -1. In this work we use M33 as a test case to examine the age distribution of an archetypal cluster population and show that it is in fact the evolving shape of the mass detection limit that defines this trend. That is to say, any magnitude-limited sample will appear to follow a dN/dt=1/t, while cutting the sample according to mass gives rise to a composite structure, perhaps implying a dependence of the cluster disruption process on mass. In the context of this framework, we examine different models of cluster disruption from both theoretical and observational standpoints.Comment: To appear in the proceedings of IAU Symposium 266: "Star Clusters: Basic Galactic Building Blocks Throughout Time And Space", eds. R. de Grijs and J. Lepin
    corecore