Observations and N-body simulations both support a simple relation for the
disruption time of a cluster as a function of its mass of the form: t_dis = t_4
* (M/10^4 Msun)^gamma. The scaling factor t_4 seems to depend strongly on the
environment. Predictions and observations show that gamma ~ 0.64 +/- 0.06.
Assuming that t_dis ~ M^0.64 is caused by evaporation and shocking implies a
relation between the radius and the mass of a cluster of the form: r_h ~
M^0.07, which has been observed in a few galaxies. The suggested relation for
the disruption time implies that the lower mass end of the cluster initial mass
function will be disrupted faster than the higher mass end, which is needed to
evolve a young power law shaped mass function into the log-normal mass function
of old (globular) clusters.Comment: 2 pages, to appear in "The Formation and Evolution of Massive Young
Star Clusters", 17-21 November 2003, Cancun (Mexico