1,143 research outputs found

    Solving the time-dependent Schr\"odinger equation with absorbing boundary conditions and source terms in Mathematica 6.0

    Full text link
    In recent decades a lot of research has been done on the numerical solution of the time-dependent Schr\"odinger equation. On the one hand, some of the proposed numerical methods do not need any kind of matrix inversion, but source terms cannot be easily implemented into this schemes; on the other, some methods involving matrix inversion can implement source terms in a natural way, but are not easy to implement into some computational software programs widely used by non-experts in programming (e.g. Mathematica). We present a simple method to solve the time-dependent Schr\"odinger equation by using a standard Crank-Nicholson method together with a Cayley's form for the finite-difference representation of evolution operator. Here, such standard numerical scheme has been simplified by inverting analytically the matrix of the evolution operator in position representation. The analytical inversion of the N x N matrix let us easily and fully implement the numerical method, with or without source terms, into Mathematica or even into any numerical computing language or computational software used for scientific computing.Comment: 15 pages, 7 figure

    Identification of the In Vivo Role of a Viral bcl-2

    Get PDF
    Many γ-herpesviruses encode candidate oncogenes including homologues of host bcl-2 and cyclin proteins (v-bcl-2, v-cyclin), but the physiologic roles of these genes during infection are not known. We show for the first time in any virus system the physiologic role of v-bcl-2. A γ-herpesvirus v-bcl-2 was essential for efficient ex vivo reactivation from latent infection, and for both persistent replication and virulence during chronic infection of immunocompromised (interferon [IFN]-γ−/−) mice. The v-cyclin was also critical for the same stages in pathogenesis. Strikingly, while the v-bcl-2 and v-cyclin were important for chronic infection, these genes were not essential for viral replication in cell culture, viral replication during acute infection in vivo, establishment of latent infection, or virulence during acute infection. We conclude that v-bcl-2 and v-cyclin have important roles during latent and persistent γ-herpesvirus infection and that herpesviruses encode genes with specific roles during chronic infection and disease, but not acute infection and disease. As γ-herpesviruses primarily cause human disease during chronic infection, these chronic disease genes may be important targets for therapeutic intervention

    Distribution and Excretion of TEGDMA in Guinea Pigs and Mice

    Get PDF
    The monomer triethyleneglycoldimethacrylate (TEGDMA) is used as a diluent in many resin-based dental materials. It was previously shown in vitro that TEGDMA was released into the adjacent biophase from such materials during the first days after placement. In this study, the uptake, distribution, and excretion of 14C-TEGDMA applied via gastric, intradermal, and intravenous administration at dose levels well above those encountered in dental care were examined in vivo in guinea pigs and mice as a test of the hypothesis that TEGDMA reaches cytotoxic levels in mammalian tissues. 14C-TEGDMA was taken up rapidly from the stomach and small intestine after gastric administration in both species and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as 14 CO2. The peak equivalent TEGDMA levels in all mouse and guinea pig tissues examined were at least 1000-fold less than known toxic levels. The study therefore did not support the hypothesis

    Increased Lysis of Stem Cells but Not Their Differentiated Cells by Natural Killer Cells; De-Differentiation or Reprogramming Activates NK Cells

    Get PDF
    The aims of this study are to demonstrate the increased lysis of stem cells but not their differentiated counterparts by the NK cells and to determine whether disturbance in cell differentiation is a cause for increased sensitivity to NK cell mediated cytotoxicity. Increased cytotoxicity and augmented secretion of IFN-γ were both observed when PBMCs or NK cells were co-incubated with primary UCLA oral squamous carcinoma stem cells (UCLA-OSCSCs) when compared to differentiated UCLA oral squamous carcinoma cells (UCLA-OSCCs). In addition, human embryonic stem cells (hESCs) were also lysed greatly by the NK cells. Moreover, NK cells were found to lyse human Mesenchymal Stem Cells (hMSCs), human dental pulp stem cells (hDPSCs) and human induced pluripotent stem cells (hiPSCs) significantly more than their differentiated counterparts or parental lines from which they were derived. It was also found that inhibition of differentiation or reversion of cells to a less-differentiated phenotype by blocking NFκB or targeted knock down of COX2 in monocytes significantly augmented NK cell cytotoxicity and secretion of IFN-γ. Taken together, these results suggest that stem cells are significant targets of the NK cell cytotoxicity. However, to support differentiation of a subset of tumor or healthy untransformed primary stem cells, NK cells may be required to lyse a number of stem cells and/or those which are either defective or incapable of full differentiation in order to lose their cytotoxic function and gain the ability to secrete cytokines (split anergy). Therefore, patients with cancer may benefit from repeated allogeneic NK cell transplantation for specific elimination of cancer stem cells

    CARDIAC MUSCLE

    Full text link

    Extended surfaces modulate and can catalyze hydrophobic effects

    Full text link
    Interfaces are a most common motif in complex systems. To understand how the presence of interfaces affect hydrophobic phenomena, we use molecular simulations and theory to study hydration of solutes at interfaces. The solutes range in size from sub-nanometer to a few nanometers. The interfaces are self-assembled monolayers with a range of chemistries, from hydrophilic to hydrophobic. We show that the driving force for assembly in the vicinity of a hydrophobic surface is weaker than that in bulk water, and decreases with increasing temperature, in contrast to that in the bulk. We explain these distinct features in terms of an interplay between interfacial fluctuations and excluded volume effects---the physics encoded in Lum-Chandler-Weeks theory [J. Phys. Chem. B 103, 4570--4577 (1999)]. Our results suggest a catalytic role for hydrophobic interfaces in the unfolding of proteins, for example, in the interior of chaperonins and in amyloid formation.Comment: 22 pages, 5 figure

    Folding of small proteins: A matter of geometry?

    Full text link
    We review some of our recent results obtained within the scope of simple lattice models and Monte Carlo simulations that illustrate the role of native geometry in the folding kinetics of two state folders.Comment: To appear in Molecular Physic

    Low cost silicon solar arrays

    Get PDF
    Continuous growth methodology for silicon solar cell ribbons deals with capillary effects, die effects, thermal effects and crystal shape effects. Emphasis centers on the shape of the meniscus at the ribbon edge as a factor contributing to ribbon quality with respect to defect densities. Structural and electrical characteristics of edge defined, film-fed grown silicon ribbons are elaborated. Ribbon crystal solar cells produce AMO efficiencies of 6 to 10%
    corecore