35 research outputs found

    Review

    No full text

    Dicyclohexylmethane as a liquid organic hydrogen carrier A model study on the dehydrogenation mechanism over palladium surfaces

    No full text
    We have studied the dehydrogenation of the liquid organic hydrogen carrier (LOHC) dicyclohexylmethane (DCHM) to diphenylmethane (DPM) and its side reactions on a Pd(111) single crystal surface. The adsorption and thermal evolution of both DPM and DCHM was measured in situ in ultrahigh vacuum (UHV) using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (HR-XPS). We found that after deposition at 170 K, the hydrogen-lean DPM undergoes C-H bond scission at the methylene bridge at 200 K and, starting at 360 K, complete dehydrogenation of the phenyl rings occurs. Above 600 K, atomic carbon incorporates into the Pd bulk. For the hydrogen-rich DCHM, the first stable dehydrogenation intermediate, a double π-allylic species, forms already at 190 K. Until 340 K, further dehydrogenation of the phenyl rings and of the methylene bridge occurs, yielding the same intermediate that is formed upon heating of DPM to this temperature, that is, DPM dehydrogenated at the methylene bridge. The onset for the complete dehydrogenation of this intermediate occurs at a much higher temperature than after adsorption of DPM. This behavior is mainly attributed to coadsorbed hydrogen from DCHM dehydrogenation. The results are discussed in comparison to our previous study of DPM and DCHM on Pt(111) revealing strong material dependencies

    Growth and electronic structure of boron doped graphene

    No full text
    The doping of graphene to tune its electronic structure is essential for its further use in carbon based electronics. Adapting strategies from classical silicon based semiconductor technology, we use the incorporation of heteroatoms in the 2D graphene network as a straightforward way to achieve this goal. Here, we report on the synthesis of boron-doped graphene on Ni(111) in a chemical vapor deposition process of triethylborane on the one hand and by segregation of boron from the bulk on the other hand. The chemical environment of boron was determined by x-ray photoelectron spectroscopy and angle resolved photoelectron spectroscopy was used to analyze the impact on the band structure. Doping with boron leads to a shift of the graphene bands to lower binding energies. The shift depends on the doping concentration and for a doping level of 0.3 ML a shift of up to 1.2 eV is observed. The experimental results are in agreement with density-functional calculations. Furthermore, our calculations suggest that doping with boron leads to graphene preferentially adsorbed in the top-fcc geometry, since the boron atoms in the graphene lattice are then adsorbed at substrate fcc-hollow sites. The smaller adsorption distance of boron compared to carbon leads to a bending of the graphene sheet in the vicinity of the boron atoms. By comparing calculations of doped and undoped graphene on Ni(111), as well as the respective free-standing cases, we are able to distinguish between the effects that doping and adsorption have on the band structure of graphene. Both, doping and bonding to the surface, result in opposing shifts on the graphene bands

    Surface Reactions of Dicyclohexylmethane on Pt 111

    No full text
    We investigated the surface reaction of the liquid organic hydrogen carrier dicyclohexylmethane (DCHM) on Pt(111) in ultrahigh vacuum by high-resolution X-ray photoelectron spectroscopy, temperature-programmed desorption, near-edge X-ray absorption fine structure, and infrared reflection–absorption spectroscopy. Additionally, the hydrogen-lean molecule diphenylmethane and the relevant molecular fragments of DCHM, methylcyclohexane, and toluene were studied to elucidate the reaction steps of DCHM. We find dehydrogenation of DCHM in the range of 200–260 K, to form a double-sided π-allylic species coadsorbed with hydrogen. Subsequently, ∌30% of the molecules desorb, and for ∌70%, one of the π-allyls reacts to a phenyl group between 260 and 330 K, accompanied by associative hydrogen desorption. Above 360 K, the second π-allylic species is dehydrogenated to a phenyl ring. This is accompanied by C–H bond scission at the methylene group, which is an unwanted decomposition step in the hydrogen storage cycle, as it alters the original hydrogen carrier DCHM. Above 450 K, we find further decomposition steps which we assign to C–H abstraction at the phenyl rings
    corecore