Surface Reactions of Dicyclohexylmethane on Pt 111

Abstract

We investigated the surface reaction of the liquid organic hydrogen carrier dicyclohexylmethane (DCHM) on Pt(111) in ultrahigh vacuum by high-resolution X-ray photoelectron spectroscopy, temperature-programmed desorption, near-edge X-ray absorption fine structure, and infrared reflection–absorption spectroscopy. Additionally, the hydrogen-lean molecule diphenylmethane and the relevant molecular fragments of DCHM, methylcyclohexane, and toluene were studied to elucidate the reaction steps of DCHM. We find dehydrogenation of DCHM in the range of 200–260 K, to form a double-sided π-allylic species coadsorbed with hydrogen. Subsequently, ∼30% of the molecules desorb, and for ∼70%, one of the π-allyls reacts to a phenyl group between 260 and 330 K, accompanied by associative hydrogen desorption. Above 360 K, the second π-allylic species is dehydrogenated to a phenyl ring. This is accompanied by C–H bond scission at the methylene group, which is an unwanted decomposition step in the hydrogen storage cycle, as it alters the original hydrogen carrier DCHM. Above 450 K, we find further decomposition steps which we assign to C–H abstraction at the phenyl rings

    Similar works

    Full text

    thumbnail-image