766 research outputs found
Congenital tumors: imaging when life just begins
BACKGROUND: The technical developments of imaging methods over the last 2 decades are changing our knowledge of perinatal oncology. Fetal ultrasound is usually the first imaging method used and thus constitutes the reference prenatal study, but MRI seems to be an excellent complementary method for evaluating the fetus. The widespread use of both techniques has increased the diagnosis rates of congenital tumors. During pregnancy and after birth, an accurate knowledge of the possibilities and limits of the different imaging techniques available would improve the information obtainable, thus helping the medical team to make the most appropriate decisions about therapy and to inform the family about the prognosis.
CONCLUSION: In this review article, we describe the main congenital neoplasms, their prognosis and their imaging characteristics with the different pre- and postnatal imaging methods available
Ground state and glass transition of the RNA secondary structure
RNA molecules form a sequence-specific self-pairing pattern at low
temperatures. We analyze this problem using a random pairing energy model as
well as a random sequence model that includes a base stacking energy in favor
of helix propagation. The free energy cost for separating a chain into two
equal halves offers a quantitative measure of sequence specific pairing. In the
low temperature glass phase, this quantity grows quadratically with the
logarithm of the chain length, but it switches to a linear behavior of entropic
origin in the high temperature molten phase. Transition between the two phases
is continuous, with characteristics that resemble those of a disordered elastic
manifold in two dimensions. For designed sequences, however, a power-law
distribution of pairing energies on a coarse-grained level may be more
appropriate. Extreme value statistics arguments then predict a power-law growth
of the free energy cost to break a chain, in agreement with numerical
simulations. Interestingly, the distribution of pairing distances in the ground
state secondary structure follows a remarkable power-law with an exponent -4/3,
independent of the specific assumptions for the base pairing energies
Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology
Mutations in the charged multivesicular body protein 2B (CHMP2B) cause frontotemporal dementia (FTD). We report that mice which express FTD-causative mutant CHMP2B at physiological levels develop a novel lysosomal storage pathology characterised by large neuronal autofluorescent aggregates. The aggregates are an early and progressive pathology that occur at 3 months of age and increase in both size and number over time. These autofluorescent aggregates are not observed in mice expressing wild-type CHMP2B, or in non-transgenic controls, indicating that they are a specific pathology caused by mutant CHMP2B. Ultrastructural analysis and immuno- gold labelling confirmed that they are derived from the endolysosomal system. Consistent with these findings, CHMP2B mutation patient brains contain morphologically similar autofluorescent aggregates. These aggregates occur significantly more frequently in human CHMP2B mutation brain than in neurodegenerative disease or age-matched control brains. These data suggest that lysosomal storage pathology is the major neuronal pathology in FTD caused by CHMP2B mutation. Recent evidence suggests that two other genes associated with FTD, GRN and TMEM106B are important for lysosomal function. Our identification of lysosomal storage pathology in FTD caused by CHMP2B mutation now provides evidence that endolysosomal dysfunction is a major degenerative pathway in FTD
ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells
International audienceICBP90 (Inverted CCAAT box Binding Protein of 90 kDa) is a recently identified nuclear protein that binds to one of the inverted CCAAT boxes of the topoisomerase IIalpha (TopoIIalpha) gene promoter. Here, we show that ICBP90 shares structural homology with several other proteins, including Np95, the human and mouse NIRF, suggesting the emergence of a new family of nuclear proteins. Towards elucidating the functions of this family, we analysed the expression of ICBP90 in various cancer or noncancer cell lines and in normal or breast carcinoma tissues. We found that cancer cell lines express higher levels of ICBP90 and TopoIIalpha than noncancer cell lines. By using cell-cycle phase-blocking drugs, we show that in primary cultured human lung fibroblasts, ICBP90 expression peaks at late G1 and during G2/M phases. In contrast, cancer cell lines such as HeLa, Jurkat and A549 show constant ICBP90 expression throughout the entire cell cycle. The effect of overexpression of E2F-1 is more efficient on ICBP90 and TopoIIalpha expression in noncancer cells (IMR90, WI38) than in cancer cells (U2OS, SaOs). Together, these results show that ICBP90 expression is altered in cancer cell lines and is upregulated by E2F-1 overexpression with an efficiency depending on the cancer status of the cell line
Cardiac tumours in children
Cardiac tumours are benign or malignant neoplasms arising primarily in the inner lining, muscle layer, or the surrounding pericardium of the heart. They can be primary or metastatic. Primary cardiac tumours are rare in paediatric practice with a prevalence of 0.0017 to 0.28 in autopsy series. In contrast, the incidence of cardiac tumours during foetal life has been reported to be approximately 0.14%. The vast majority of primary cardiac tumours in children are benign, whilst approximately 10% are malignant. Secondary malignant tumours are 10–20 times more prevalent than primary malignant tumours. Rhabdomyoma is the most common cardiac tumour during foetal life and childhood. It accounts for more than 60% of all primary cardiac tumours. The frequency and type of cardiac tumours in adults differ from those in children with 75% being benign and 25% being malignant. Myxomas are the most common primary tumours in adults constituting 40% of benign tumours. Sarcomas make up 75% of malignant cardiac masses. Echocardiography, Computing Tomography (CT) and Magnetic Resonance Imaging (MRI) of the heart are the main non-invasive diagnostic tools. Cardiac catheterisation is seldom necessary. Tumour biopsy with histological assessment remains the gold standard for confirmation of the diagnosis. Surgical resection of primary cardiac tumours should be considered to relieve symptoms and mechanical obstruction to blood flow. The outcome of surgical resection in symptomatic, non-myxomatous benign cardiac tumours is favourable. Patients with primary cardiac malignancies may benefit from palliative surgery but this approach should not be recommended for patients with metastatic cardiac tumours. Surgery, chemotherapy and radiotherapy may prolong survival. The prognosis for malignant primary cardiac tumours is generally extremely poor
Phenotypic Variation and Bistable Switching in Bacteria
Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
Bistability, Probability Transition Rate and First-Passage Time in an Autoactivating Positive-Feedback Loop
A hallmark of positive-feedback regulation is bistability, which gives rise to distinct cellular states with high and low expression levels, and that stochasticity in gene expression can cause random transitions between two states, yielding bimodal population distribution (Kaern et al., 2005, Nat Rev Genet 6: 451-464). In this paper, the probability transition rate and first-passage time in an autoactivating positive-feedback loop with bistability are investigated, where the gene expression is assumed to be disturbed by both additive and multiplicative external noises, the bimodality in the stochastic gene expression is due to the bistability, and the bistability determines that the potential of the Fokker-Planck equation has two potential wells. Our main goal is to illustrate how the probability transition rate and first-passage time are affected by the maximum transcriptional rate, the intensities of additive and multiplicative noises, and the correlation of additive and multiplicative noises. Our main results show that (i) the increase of the maximum transcription rate will be useful for maintaining a high gene expression level; (ii) the probability transition rate from one potential well to the other one will increase with the increase of the intensity of additive noise; (iii) the increase of multiplicative noise strength will increase the amount of probability in the left potential well; and (iv) positive (or negative) cross-correlation between additive and multiplicative noises will increase the amount of probability in the left (or right) potential well
A Novel Extracellular Hsp90 Mediated Co-Receptor Function for LRP1 Regulates EphA2 Dependent Glioblastoma Cell Invasion
Extracellular Hsp90 protein (eHsp90) potentiates cancer cell motility and invasion through a poorly understood mechanism involving ligand mediated function with its cognate receptor LRP1. Glioblastoma multiforme (GBM) represents one of the most aggressive and lethal brain cancers. The receptor tyrosine kinase EphA2 is overexpressed in the majority of GBM specimens and is a critical mediator of GBM invasiveness through its AKT dependent activation of EphA2 at S897 (P-EphA2(S897)). We explored whether eHsp90 may confer invasive properties to GBM via regulation of EphA2 mediated signaling.We find that eHsp90 signaling is essential for sustaining AKT activation, P-EphA2(S897), lamellipodia formation, and concomitant GBM cell motility and invasion. Furthermore, eHsp90 promotes the recruitment of LRP1 to EphA2 in an AKT dependent manner. A finding supported by biochemical methodology and the dual expression of LRP1 and P-EphA2(S897) in primary and recurrent GBM tumor specimens. Moreover, hypoxia mediated facilitation of GBM motility and invasion is dependent upon eHsp90-LRP1 signaling. Hypoxia dramatically elevated surface expression of both eHsp90 and LRP1, concomitant with eHsp90 dependent activation of src, AKT, and EphA2.We herein demonstrate a novel crosstalk mechanism involving eHsp90-LRP1 dependent regulation of EphA2 function. We highlight a dual role for eHsp90 in transducing signaling via LRP1, and in facilitating LRP1 co-receptor function for EphA2. Taken together, our results demonstrate activation of the eHsp90-LRP1 signaling axis as an obligate step in the initiation and maintenance of AKT signaling and EphA2 activation, thereby implicating this pathway as an integral component contributing to the aggressive nature of GBM
Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque
Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events
- …