25 research outputs found
Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale
We study the NMSSM with universal Susy breaking terms (besides the Higgs
sector) at the GUT scale. Within this constrained parameter space, it is not
difficult to find a Higgs boson with a mass of about 125 GeV and an enhanced
cross section in the diphoton channel. An additional lighter Higgs boson with
reduced couplings and a mass <123 GeV is potentially observable at the LHC. The
NMSSM-specific Yukawa couplings lambda and kappa are relatively large and
tan(beta) is small, such that lambda, kappa and the top Yukawa coupling are of
order 1 at the GUT scale. The lightest stop can be as light as 105 GeV, and the
fine-tuning is modest. WMAP constraints can be satisfied by a dominantly
higgsino-like LSP with substantial bino, wino and singlino admixtures and a
mass of ~60-90 GeV, which would potentially be detectable by XENON100.Comment: 20 pages, 14 figure
Relic Abundance of Asymmetric Dark Matter
We investigate the relic abundance of asymmetric Dark Matter particles that
were in thermal equilibrium in the early universe. The standard analytic
calculation of the symmetric Dark Matter is generalized to the asymmetric case.
We calculate the asymmetry required to explain the observed Dark Matter relic
abundance as a function of the annihilation cross section. We show that
introducing an asymmetry always reduces the indirect detection signal from WIMP
annihilation, although it has a larger annihilation cross section than
symmetric Dark Matter. This opens new possibilities for the construction of
realistic models of MeV Dark Matter.Comment: 20 pages, 11 figures, Accepted by JCA
Asymmetric Dark Matter and Dark Radiation
Asymmetric Dark Matter (ADM) models invoke a particle-antiparticle asymmetry,
similar to the one observed in the Baryon sector, to account for the Dark
Matter (DM) abundance. Both asymmetries are usually generated by the same
mechanism and generally related, thus predicting DM masses around 5 GeV in
order to obtain the correct density. The main challenge for successful models
is to ensure efficient annihilation of the thermally produced symmetric
component of such a light DM candidate without violating constraints from
collider or direct searches. A common way to overcome this involves a light
mediator, into which DM can efficiently annihilate and which subsequently
decays into Standard Model particles. Here we explore the scenario where the
light mediator decays instead into lighter degrees of freedom in the dark
sector that act as radiation in the early Universe. While this assumption makes
indirect DM searches challenging, it leads to signals of extra radiation at BBN
and CMB. Under certain conditions, precise measurements of the number of
relativistic species, such as those expected from the Planck satellite, can
provide information on the structure of the dark sector. We also discuss the
constraints of the interactions between DM and Dark Radiation from their
imprint in the matter power spectrum.Comment: 22 pages, 5 figures, to be published in JCAP, minor changes to match
version to be publishe
Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks
It is argued that experimental constraints on theories of asymmetric dark
matter (ADM) almost certainly require that the DM be part of a richer hidden
sector of interacting states of comparable mass or lighter. A general requisite
of models of ADM is that the vast majority of the symmetric component of the DM
number density must be removed in order to explain the observed relationship
via the DM asymmetry. Demanding the efficient
annihilation of the symmetric component leads to a tension with experimental
limits if the annihilation is directly to Standard Model (SM) degrees of
freedom. A comprehensive effective operator analysis of the model independent
constraints on ADM from direct detection experiments and LHC monojet searches
is presented. Notably, the limits obtained essentially exclude models of ADM
with mass 1GeV 100GeV annihilating to SM quarks via
heavy mediator states. This motivates the study of portal interactions between
the dark and SM sectors mediated by light states. Resonances and threshold
effects involving the new light states are shown to be important for
determining the exclusion limits.Comment: 18+6 pages, 18 figures. v2: version accepted for publicatio
Dark Matter Assimilation into the Baryon Asymmetry
Pure singlets are typically disfavored as dark matter candidates, since they
generically have a thermal relic abundance larger than the observed value. In
this paper, we propose a new dark matter mechanism called "assimilation", which
takes advantage of the baryon asymmetry of the universe to generate the correct
relic abundance of singlet dark matter. Through assimilation, dark matter
itself is efficiently destroyed, but dark matter number is stored in new
quasi-stable heavy states which carry the baryon asymmetry. The subsequent
annihilation and late-time decay of these heavy states yields (symmetric) dark
matter as well as (asymmetric) standard model baryons. We study in detail the
case of pure bino dark matter by augmenting the minimal supersymmetric standard
model with vector-like chiral multiplets. In the parameter range where this
mechanism is effective, the LHC can discover long-lived charged particles which
were responsible for assimilating dark matter.Comment: 27 pages, 9 figures, 4 tables; v2, references added, switched to JCAP
format; v3, references added, version published in JCA
Electroweak Baryogenesis and Dark Matter with an approximate R-symmetry
It is well known that R-symmetric models dramatically alleviate the SUSY
flavor and CP problems. We study particular modifications of existing
R-symmetric models which share the solution to the above problems, and have
interesting consequences for electroweak baryogenesis and the Dark Matter (DM)
content of the universe. In particular, we find that it is naturally possible
to have a strongly first-order electroweak phase transition while
simultaneously relaxing the tension with EDM experiments. The R-symmetry (and
its small breaking) implies that the gauginos (and the neutralino LSP) are
pseudo-Dirac fermions, which is relevant for both baryogenesis and DM. The
singlet superpartner of the U(1)_Y pseudo-Dirac gaugino plays a prominent role
in making the electroweak phase transition strongly first-order. The
pseudo-Dirac nature of the LSP allows it to behave similarly to a Dirac
particle during freeze-out, but like a Majorana particle for annihilation today
and in scattering against nuclei, thus being consistent with current
constraints. Assuming a standard cosmology, it is possible to simultaneously
have a strongly first-order phase transition conducive to baryogenesis and have
the LSP provide the full DM relic abundance, in part of the allowed parameter
space. However, other possibilities for DM also exist, which are discussed. It
is expected that upcoming direct DM searches as well as neutrino signals from
DM annihilation in the Sun will be sensitive to this class of models.
Interesting collider and Gravity-wave signals are also briefly discussed.Comment: 50 pages, 10 figure
Oscillating Asymmetric Dark Matter
We study the dynamics of dark matter (DM) particle-antiparticle oscillations
within the context of asymmetric DM. Oscillations arise due to small DM
number-violating Majorana-type mass terms, and can lead to recoupling of
annihilation after freeze-out and washout of the DM density. We derive the
density matrix equations for DM oscillations and freeze-out from first
principles using nonequilibrium field theory, and our results are qualitatively
different than in previous studies. DM dynamics exhibits
particle-vs-antiparticle "flavor" effects, depending on the interaction type,
analogous to neutrino oscillations in a medium. "Flavor-sensitive" DM
interactions include scattering or annihilation through a new vector boson,
while "flavor-blind" interactions include scattering or s-channel annihilation
through a new scalar boson, or annihilation to pairs of bosons. In particular,
we find that flavor-sensitive annihilation does not recouple when coherent
oscillations begin, and that flavor-blind scattering does not lead to
decoherence.Comment: 23 pages, 4 figures, A typo fixed, References adde