3,026 research outputs found
Nanorod optical antennas for dipolar transitions
Optical antennas link objects to light. Here, we analyze metal nanorod
antennas as cavities with variable reflection coefficients to derive the
interaction of dipolar transitions with radiation through the antenna modes.
The presented analytical model accurately describes the complete emission
process, and is summarized in a phase-matching equation. We show how antenna
modes evolve as they become increasingly more bound, i.e. plasmonic. The
results illustrate why efficient antennas should not be too plasmonic, and how
subradiant even modes can evolve into weakly-interacting dark modes. Our
description is valid for the interaction of nanorods with light in general, and
is thus widely applicable.Comment: 10 pages, 4 figures, submitte
Phase mapping of ultrashort pulses in bimodal photonic structures: A window on local group velocity dispersion
The amplitude and phase evolution of ultrashort pulses in a bimodal waveguide structure has been studied with a time-resolved photon scanning tunneling microscope (PSTM). When waveguide modes overlap in time intriguing phase patterns are observed. Phase singularities, arising from interference between different modes, are normally expected at equidistant intervals determined by the difference in effective index for the two modes. However, in the pulsed experiments the distance between individual singularities is found to change not only within one measurement frame, but even depends strongly on the reference time. To understand this observation it is necessary to take into account that the actual pulses generating the interference signal change shape upon propagation through a dispersive medium. This implies that the spatial distribution of phase singularities contains direct information on local dispersion characteristics. At the same time also the mode profiles, wave vectors, pulse lengths, and group velocities of all excited modes in the waveguide are directly measured. The combination of these parameters with an analytical model for the time-resolved PSTM measurements shows that the unique spatial phase information indeed gives a direct measure for the group velocity dispersion of individual modes. As a result interesting and useful effects, such as pulse compression, pulse spreading, and pulse reshaping become accessible in a local measuremen
A new and versatile method for the successful conversion of AFLP-TM markers into simple single locus markers
Genetic markers can efficiently be obtained by using amplified fragment length polymorphism (AFLP) fingerprinting because no prior information on DNA sequence is required. However, the conversion of AFLP markers from complex fingerprints into simple single locus assays is perceived as problematic because DNA sequence information is required for the design of new locus-specific PCR primers. In addition, single locus polymorphism (SNP) information is required to design an allele-specific assay. This paper describes a new and versatile method for the conversion of AFLP markers into simple assays. The protocol presented in this paper offers solutions for frequently occurring pitfalls and describes a procedure for the identification of the SNP responsible for the AFLP. By following this approach, a high success rate for the conversion of AFLP markers into locus-specific markers was obtained
Many-body wave scattering by small bodies
Scattering problem by several bodies, small in comparison with the
wavelength, is reduced to linear algebraic systems of equations, in contrast to
the usual reduction to some integral equations
Benchmarking Burgerzaken : een empirisch onderzoek naar de kostendoelmatigheid van burgerzaken
De noodzaak van productiviteitsgroei in de publieke sector is nu groter dan ooit. Aan deze noodzaak liggen twee ontwikkelingen ten grondslag. In de eerste plaats staan de financiën van de publieke sector onder druk als gevolg van bezuinigingen. In de tweede plaats worden er op de langere termijn knelpunten op de arbeidsmarkt verwacht als gevolg van vergrijzing en ontgroening van de bevolking. In de marksector dwingen concurrentieoverwegingen organisaties ertoe om voortdurend aandacht te hebben voor productiviteitsverbetering en deze waar mogelijk te realiseren. In de publieke sector ontbreken de prikkels van de markt en lijken productiviteitsverbeteringen moeizaam tot stand te komen
Optical Albedo Theory of Strongly-Irradiated Giant Planets: The Case of HD 209458b
We calculate a new suite of albedo models for close-in extrasolar giant
planets and compare with the recent stringent upper limit for HD 209458b of
Rowe et al. using MOST. We find that all models without scattering clouds are
consistent with this optical limit. We explore the dependence on wavelength and
waveband, metallicity, the degree of heat redistribution, and the possible
presence of thermal inversions and find a rich diversity of behaviors.
Measurements of transiting extrasolar giant planets (EGPs) at short wavelengths
by MOST, Kepler, and CoRoT, as well as by proposed dedicated multi-band
missions, can complement measurements in the near- and mid-IR using {\it
Spitzer} and JWST. Collectively, such measurements can help determine
metallicity, compositions, atmospheric temperatures, and the cause of thermal
inversions (when they arise) for EGPs with a broad range of radii, masses,
degrees of stellar insolation, and ages. With this paper, we reappraise and
highlight the diagnostic potential of albedo measurements of hot EGPs shortward
of 1.3 m.Comment: 6 pages, 1 table, 1 color figure; accepted to the Astrophysical
Journa
A monopole antenna at optical frequencies: single-molecule near-field measurements
We present a monopole antenna for optical frequencies (~600 THz) and discuss near-field measurements with single fluorescent molecules as a technique to characterize such antennas. The similarities and differences between near-field antenna measurements at optical and radio frequencies are discussed in detail. Two typical antenna properties, polarization selectivity and resonances, are studied for the optical monopole by direct near-field measurements and finite integration technique calculations. The antenna is driven by the local field of a sub-wavelength aperture. This gives rise to a dependence of the antenna response on the orientation of the local field vector, in an analogous way to the polarization selectivity of linear wire antennas. The antenna resonances are studied by varying the antenna length. Typical monopole resonances are demonstrated. The finite conductivity of metals at optical frequencies (in combination with the antenna radius) causes the wavelength of the surface charge density oscillation (surface plasmon polariton) along the antenna to be shortened in comparison to the free space wavelength. As a result, resonances for the optical monopole antenna occur at much shorter relative lengths than for conventional radio monopole antennas\ud
\u
Epsilons Near Zero limits in the Mie scattering theory
The classical Mie theory - electromagnetic radiation scattering by the
homogeneous spherical particles - is considered in the epsilon near zero limits
separately for the materials of the particles and the surrounding medium. The
maxima of a scattered transverse electrical (TE) field for the surrounding
medium materials with the epsilon near zero limits are revealed. The effective
multipole polarizabilities of the corresponding scattering particles are
investigated. The possibility to achieve magnetic dipole resonance and
accordingly to construct metamaterials with negative refractive index for the
aggregates spherical particles in surrounding medium with the epsilon near zero
limits is considered.Comment: 8 pages, 6 figure
Universality in scattering by large-scale potential fluctuations in two-dimensional conductors
We study electron propagation through a random array of rare, opaque and
large (compared the de Broglie wavelength of electrons) scatterers. It is shown
that for any convex scatterer the ratio of the transport to quantum lifetimes
\eta=\tau_{tr}/\tau_{tot}$ does not depend on the shape of the scatterer but
only on whether scattering is specular or diffuse and on the spatial
dimensionality (D). In particular, for specular scattering, \eta is a universal
constant determined only by the dimensionality of the system: \eta = 2 for D =
3 and \eta = 3/2 for D = 2. The crossover between classical and quantum regimes
of scattering is discussed.Comment: 4 pages, 3 figures, submitted to PR
Design and analytically full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations
We investigate a general class of electromagnetic devices created with any
continuous transformation functions by rigorously calculating the analytical
expressions of the electromagnetic field in the whole space. Some interesting
phenomena associated with these transformation devices, including the
invisibility cloaks, concentrators, and field rotators, are discussed. By
carefully choosing the transformation function, we can realize cloaks which are
insensitive to perturbations at both the inner and outer boundaries.
Furthermore, we find that when the coating layer of the concentrator is
realized with left-handed materials, energy will circulate between the coating
and the core, and the energy transmits through the core of the concentrator can
be much bigger than that transmits through the concentrator. Therefore, such
concentrator is also a power flux amplifier. Finally, we propose a spherical
field rotator, which functions as not only a wave vector rotator, but also a
polarization rotator, depending on the orientations of the spherical rotator
with respect to the incident wave direction. The functionality of these novel
transformation devices are all successfully confirmed by our analytical full
wave method, which also provides an alternate computational efficient
validation method in contrast to numerical validation methods.Comment: 22 pages, 3 figure
- …
