93 research outputs found
Mass spectrometers and atomic oxygen
The likely role of atmospheric atomic oxygen in the recession of spacecraft surfaces and in the shuttle glow has revived interest in the accurate measurement of atomic oxygen densities in the upper atmosphere. The Air Force Geophysics Laboratory is supplying a quadrupole mass spectrometer for a materials interactions flight experiment being planned by the Johnson Space Center. The mass spectrometer will measure the flux of oxygen on test materials and will also identify the products of surface reactions. The instrument will be calibrated at a new facility for producing high energy beams of atomic oxygen at the Los Alamos National Laboratory. The plans for these calibration experiments are summarized
High intensity 5 eV O-atom exposure facility for material degradation studies
An atomic oxygen exposure facility was developed for studies of material degradation. The goal of these studies is to provide design criteria and information for the manufacture of long life (20 to 30 years) construction materials for use in low Earth orbit. The studies that are being undertaken will provide: (1) absolute reaction cross sections for the engineering design problems, (2) formulations of reaction mechanisms for use in the selection of suitable existing materials and the design of new more resistant ones, and (3) the calibration of flight hardware (mass spectrometers, etc.) in order to directly relate experiments performed in low Earth orbit to ground based investigations. The facility consists of a CW laser sustained discharge source of O-atoms, an atomic beam formation and diagnostics system, a spinning rotor viscometer, and provision for using the system for calibration of actual flight instruments
Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?
Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel
Measurement of the neutron lifetime using an asymmetric magneto- gravitational trap and in situ detection
The precise value of the mean neutron lifetime, , plays an important
role in nuclear and particle physics and cosmology. It is a key input for
predicting the ratio of protons to helium atoms in the primordial universe and
is used to search for new physics beyond the Standard Model of particle
physics. There is a 3.9 standard deviation discrepancy between
measured by counting the decay rate of free neutrons in a beam (887.7 2.2
s) and by counting surviving ultracold neutrons stored for different storage
times in a material trap (878.50.8 s). The experiment described here
eliminates loss mechanisms present in previous trap experiments by levitating
polarized ultracold neutrons above the surface of an asymmetric storage trap
using a repulsive magnetic field gradient so that the stored neutrons do not
interact with material trap walls and neutrons in quasi-stable orbits rapidly
exit the trap. As a result of this approach and the use of a new in situ
neutron detector, the lifetime reported here (877.7 0.7 (stat) +0.4/-0.2
(sys) s) is the first modern measurement of that does not require
corrections larger than the quoted uncertainties.Comment: 9 pages, 3 figures, 2 table
Projection Imaging with Ultracold Neutrons
Ultracold neutron (UCN) projection imaging is demonstrated using a boron-coated back-illuminated CCD camera and the Los Alamos UCN source. Each neutron is recorded through the capture reactions with10B. By direct detection at least one of the byproducts α, 7Li and γ (electron recoils) derived from the neutron capture and reduction of thermal noise of the scientific CCD camera, a signal-to-noise improvement on the order of 104 over the indirect detection has been achieved. Sub-pixel position resolution of a few microns is confirmed for individual UCN events. Projection imaging of test objects shows a spatial resolution less than 100μm by an integrated UCN flux one the order of 106 cm−2. The bCCD can be used to build UCN detectors with an area on the order of 1 m2. The combination of micrometer scale spatial resolution, low readout noise of a few electrons, and large area makes bCCD suitable for quantum science of UCN
A boron-coated CCD camera for direct detection of Ultracold Neutrons (UCN)
A new boron-coated CCD camera is described for direct detection of ultracold
neutrons (UCN) through the capture reactions B
(n,0)Li (6%) and B(n,1)Li (94%).
The experiments, which extend earlier works using a boron-coated ZnS:Ag
scintillator, are based on direct detections of the neutron-capture byproducts
in silicon. The high position resolution, energy resolution and particle ID
performance of a scientific CCD allows for observation and identification of
all the byproducts , Li and (electron recoils). A
signal-to-noise improvement on the order of 10 over the indirect method has
been achieved. Sub-pixel position resolution of a few microns is demonstrated.
The technology can also be used to build UCN detectors with an area on the
order of 1 m. The combination of micrometer scale spatial resolution, few
electrons ionization thresholds and large area paves the way to new research
avenues including quantum physics of UCN and high-resolution neutron imaging
and spectroscopy.Comment: 10 pages, 8 figure
Status of the UCNτ experiment
The neutron is the simplest nuclear system that can be used to probe the structure of the weak interaction and search for physics beyond the standard model. Measurements of neutron lifetime and β-decay correlation coefficients with precisions of 0.02% and 0.1%, respectively, would allow for stringent constraints on new physics. The UCNτ experiment uses an asymmetric magneto-gravitational UCN trap with in situ counting of surviving neutrons to measure the neutron lifetime, τ_n = 877.7s (0.7s)_(stat) (+0.4/−0.2s)_(sys). We discuss the recent result from UCNτ, the status of ongoing data collection and analysis, and the path toward a 0.25 s measurement of the neutron lifetime with UCNτ
- …