229 research outputs found

    Biermann Mechanism in Primordial Supernova Remnant and Seed Magnetic Fields

    Full text link
    We study generation of magnetic fields by the Biermann mechanism in the pair-instability supernovae explosions of first stars. The Biermann mechanism produces magnetic fields in the shocked region between the bubble and interstellar medium (ISM), even if magnetic fields are absent initially. We perform a series of two-dimensional magnetohydrodynamic simulations with the Biermann term and estimate the amplitude and total energy of the produced magnetic fields. We find that magnetic fields with amplitude 10−14−10−1710^{-14}-10^{-17} G are generated inside the bubble, though the amount of magnetic fields generated depend on specific values of initial conditions. This corresponds to magnetic fields of 1028−103110^{28}-10^{31} erg per each supernova remnant, which is strong enough to be the seed magnetic field for galactic and/or interstellar dynamo.Comment: 12 pages, 3 figure

    Large Polarization Degree of Comet 2P/Encke Continuum Based on Spectropolarimetric Signals During Its 2017 Apparition

    Full text link
    Spectropolarimetry is a powerful technique for investigating the physical properties of gas and solid materials in cometary comae without mutual contamination, but there have been few spectropolarimetric studies to extract each component. We attempt to derive the continuum polarization degree of comet 2P/Encke, free from influence of molecular emissions. The target is unique in that it has an orbit dynamically decoupled from Jupiter like main-belt asteroids, while ejecting gas and dust like ordinary comets. We observed the comet using the Higashi-Hiroshima Optical and Near-Infrared Camera attached to the Cassegrain focus of the 150-cm Kanata telescope on UT 2017 February 21 when the comet was at the solar phase angle of 75.7 deg. We find that the continuum polarization degree with respect to the scattering plane is 33.8+/-2.7 % at the effective wavelength of 0.815 um, which is significantly higher than those of cometary dust in a high-Pmax group at similar phase angles. Assuming that an ensemble polarimetric response of 2P/Encke's dust as a function of phase angle is morphologically similar with those of other comets, its maximum polarization degree is estimated to > 40 % at the phase angle of ~100 deg. In addition, we obtain the polarization degrees of the C2 swan bands (0.51-0.56 um), the NH2 alpha bands (0.62-0.69 um) and the CN-red system (0.78-0.94 um) in a range of 3-19 %, which depend on the molecular species and rotational quantum numbers of each branch. The polarization vector aligns nearly perpendicularly to the scattering plane with the average of 0.4 deg over a wavelength range of 0.50-0.97 um. From the observational evidence, we conjecture that the large polarization degree of 2P/Encke would be attributable to a dominance of large dust particles around the nucleus, which have remained after frequent perihelion passages near the Sun.Comment: 9 pages, 4 figures, accepted for publication in Astronomy & Astrophysic

    Outstanding Charge Mobility by Band Transport in Two-Dimensional Semiconducting Covalent Organic Frameworks

    Get PDF
    [Image: see text] Two-dimensional covalent organic frameworks (2D COFs) represent a family of crystalline porous polymers with a long-range order and well-defined open nanochannels that hold great promise for electronics, catalysis, sensing, and energy storage. To date, the development of highly conductive 2D COFs has remained challenging due to the finite π-conjugation along the 2D lattice and charge localization at grain boundaries. Furthermore, the charge transport mechanism within the crystalline framework remains elusive. Here, time- and frequency-resolved terahertz spectroscopy reveals intrinsically Drude-type band transport of charge carriers in semiconducting 2D COF thin films condensed by 1,3,5-tris(4-aminophenyl)benzene (TPB) and 1,3,5-triformylbenzene (TFB). The TPB–TFB COF thin films demonstrate high photoconductivity with a long charge scattering time exceeding 70 fs at room temperature which resembles crystalline inorganic materials. This corresponds to a record charge carrier mobility of 165 ± 10 cm(2) V(–1) s(–1), vastly outperforming that of the state-of-the-art conductive COFs. These results reveal TPB–TFB COF thin films as promising candidates for organic electronics and catalysis and provide insights into the rational design of highly crystalline porous materials for efficient and long-range charge transport

    The interrelation between the generation of large-scale electric fields and that of large-scale magnetic fields during inflation

    Full text link
    The interrelation between the generation of large-scale electric fields and that of large-scale magnetic fields due to the breaking of the conformal invariance of the electromagnetic field in inflationary cosmology is studied. It is shown that if large-scale magnetic fields with a sufficiently large amplitude are generated during inflation, the generation of large-scale electric fields is suppressed, and vice versa. Furthermore, a physical interpretation of the result and its cosmological significance are considered.Comment: 12 pages, no figure, title changed, typos correcte

    Primordial magnetic fields from second-order cosmological perturbations: Tight coupling approximation

    Full text link
    We explore the possibility of generating large-scale magnetic fields from second-order cosmological perturbations during the pre-recombination era. The key process for this is Thomson scattering between the photons and the charged particles within the cosmic plasma. To tame the multi-component interacting fluid system, we employ the tight coupling approximation. It is shown that the source term for the magnetic field is given by the vorticity, which signals the intrinsically second-order quantities, and the product of the first order perturbations. The vorticity itself is sourced by the product of the first-order quantities in the vorticity evolution equation. The magnetic fields generated by this process are estimated to be ∌10−29\sim 10^{-29} Gauss on the horizon scale at the recombination epoch. Although our rough estimate suggests that the current generation mechanism can work even on smaller scales, more careful investigation is needed to make clear whether it indeed works in a wide range of spatial scales.Comment: 10pages, minor corrections, accepted for publication in Class. Quant. Gra

    MFGE8 does not influence chorio-retinal homeostasis or choroidal neovascularization in vivo

    Get PDF
    Purpose: Milk fat globule-epidermal growth factor-factor VIII (MFGE8) is necessary for diurnal outer segment phagocytosis and promotes VEGF-dependent neovascularization. The prevalence of two single nucleotide polymorphisms (SNP) in MFGE8 was studied in two exsudative or “wet” Age-related Macular Degeneration (AMD) groups and two corresponding control groups. We studied the effect of MFGE8 deficiency on retinal homeostasis with age and on choroidal neovascularization (CNV) in mice. Methods: The distribution of the SNP (rs4945 and rs1878326) of MFGE8 was analyzed in two groups of patients with “wet” AMD and their age-matched controls from Germany and France. MFGE8-expressing cells were identified in Mfge8+/− mice expressing ß-galactosidase. Aged Mfge8+/− and Mfge8−/− mice were studied by funduscopy, histology, electron microscopy, scanning electron microscopy of vascular corrosion casts of the choroid, and after laser-induced CNV. Results: rs1878326 was associated with AMD in the French and German group. The Mfge8 promoter is highly active in photoreceptors but not in retinal pigment epithelium cells. Mfge8−/− mice did not differ from controls in terms of fundus appearance, photoreceptor cell layers, choroidal architecture or laser-induced CNV. In contrast, the Bruch's membrane (BM) was slightly but significantly thicker in Mfge8−/− mice as compared to controls. Conclusions: Despite a reproducible minor increase of rs1878326 in AMD patients and a very modest increase in BM in Mfge8−/− mice, our data suggests that MFGE8 dysfunction does not play a critical role in the pathogenesis of AMD
    • 

    corecore