585 research outputs found

    External magnetic field effects on a distorted kagome antiferromagnet

    Full text link
    We report bulk magnetization, and elastic and inelastic neutron scattering measurements under an external magnetic field, HH, on the weakly coupled distorted kagome system, Cu_{2}(OD)_3Cl. Our results show that the ordered state below 6.7 K is a canted antiferromagnet and consists of large antiferromagnetic acac-components and smaller ferromagnetic bb-components. By first-principle calculations and linear spin wave analysis, we present a simple spin hamiltonian with non-uniform nearest neighbor exchange interactions resulting in a system of coupled spin trimers with a single-ion anisotropy that can qualitatively reproduce the spin dynamics of Cu_{2}(OD)_3Cl.Comment: 5 figure

    Quantum phase transitions and decoupling of magnetic sublattices in the quasi-two-dimensional Ising magnet Co3V2O8 in a transverse magnetic field

    Full text link
    The application of a magnetic field transverse to the easy axis, Ising direction in the quasi-two-dimensional Kagome staircase magnet, Co3V2O8, induces three quantum phase transitions at low temperatures, ultimately producing a novel high field polarized state, with two distinct sublattices. New time-of-flight neutron scattering techniques, accompanied by large angular access, high magnetic field infrastructure allow the mapping of a sequence of ferromagnetic and incommensurate phases and their accompanying spin excitations. At least one of the transitions to incommensurate phases at \mu 0Hc1~6.25 T and \mu 0Hc2~7 T is discontinuous, while the final quantum critical point at \mu 0Hc3~13 T is continuous.Comment: 5 pages manuscript, 3 pages supplemental materia

    Invasive pulmonary aspergillosis: effects of early resection in a neutropenic rat model

    Get PDF
    Objective: Invasive pulmonary aspergillosis is frequent in neutropenic patients. Usually localized in the beginning, the disease spreads and mortality is high despite antifungal treatment. The role of early adjuvant surgery is not clear. Surgery may help to confirm fungal disease, may control fungal disease locally and may prevent systemic spreading. This study examines effects of early resection on survival and dissemination in a rat model of localized invasive pulmonary aspergillosis. Methods: Forty persistently neutropenic male albino rats were challenged with standardized conidial aspergillus inoculum injected into peripheral lung tissue of the right upper lobe under direct vision. Animals were divided into four groups. Twenty animals were treated with amphotericin B at 1 mg/kg per day beginning 48 h after inoculation, 20 animals were left untreated. In each group half the animals underwent early resection of localized invasive aspergillosis by lobectomy. Animals were checked daily and mortality was recorded up to 28 days after which surviving animals were sacrificed. Results: Significantly higher survival was observed in resected animals in the non-Am B groups (survival: 10±19% without early resection and 50±32% with early resection; P=0.044). However, early resection did not lead to improved survival in animals treated with amphotericin B (survival 70±29% without early resection and 50±32% with early resection; P=0.316). Conclusions: In this rat model of localized invasive pulmonary aspergillosis effects of early resection on survival could be demonstrated only in animals not receiving amphotericin B treatmen

    Excitations from a Bose-Einstein condensate of magnons in coupled spin ladders

    Full text link
    The weakly coupled quasi-one-dimensional spin ladder compound (CH3_3)2_2CHNH3_3CuCl3_3 is studied by neutron scattering in magnetic fields exceeding the critical field of Bose-Einstein condensation of magnons. Commensurate long-range order and the associated Goldstone mode are detected and found to be similar to those in a reference 3D quantum magnet. However, for the upper two massive magnon branches the observed behavior is totally different, culminating in a drastic collapse of excitation bandwidth beyond the transition point.Comment: 4 pages, 4 figure

    Excitations in a four leg antiferromagnetic Heisenberg spin tube

    Get PDF
    Inelastic neutron scattering is used to investigate magnetic excitations in the quasi one dimensional quantum spin liquid system Cu2Cl4 D8C4SO2. Contrary to previously conjectured models that relied on bond alternating nearest neighbor interactions in the spin chains, the dominant interactions are actually next nearest neighbor in chain antiferromagnetic couplings. The appropriate Heisenberg Hamiltonian is equivalent to that of a S 1 2 4 leg spin tube with almost perfect one dimensionality and no bond alternation. A partial geometric frustration of rung interactions induces a small incommensurability of short range spin correlations

    Inflection point in the magnetic field dependence of the ordered moment of URu2Si2 observed by neutron scattering in fields up to 17 T

    Full text link
    We have measured the magnetic field dependence of the ordered antiferromagnetic moment and the magnetic excitations in the heavy-fermion superconductor URu2Si2 for fields up to 17 Tesla applied along the tetragonal c axis, using neutron scattering. The decrease of the magnetic intensity of the tiny moment with increasing field does not follow a simple power law, but shows a clear inflection point, indicating that the moment disappears first at the metamagnetic transition at ~40 T. This suggests that the moment m is connected to a hidden order parameter Phi which belongs to the same irreducible representation breaking time-reversal symmetry. The magnetic excitation gap at the antiferromagnetic zone center Q=(1,0,0) increases continuously with increasing field, while that at Q=(1.4,0,0) is nearly constant. This field dependence is opposite to that of the gap extracted from specific-heat data.Comment: 10 pages, 5 figures, submitted to PR

    Dominance of a clonal green sulfur bacterial population in a stratified lake

    Get PDF
    For many years, the chemocline of the meromictic Lake Cadagno, Switzerland, was dominated by purple sulfur bacteria. However, following a major community shift in recent years, green sulfur bacteria (GSB) have come to dominate. We investigated this community by performing microbial diversity surveys using FISH cell counting and population multilocus sequence typing [clone library sequence analysis of the small subunit (SSU) rRNA locus and two loci involved in photosynthesis in GSB: fmoA and csmCA]. All bacterial populations clearly stratified according to water column chemistry. The GSB population peaked in the chemocline (c. 8 × 106 GSB cells mL−1) and constituted about 50% of all cells in the anoxic zones of the water column. At least 99.5% of these GSB cells had SSU rRNA, fmoA, and csmCA sequences essentially identical to that of the previously isolated and genome-sequenced GSB Chlorobium clathratiforme strain BU-1 (DSM 5477). This ribotype was not detected in Lake Cadagno before the bloom of GSB. These observations suggest that the C. clathratiforme population that has stabilized in Lake Cadagno is clonal. We speculate that such a clonal bloom could be caused by environmental disturbance, mutational adaptation, or invasio

    Quantum spin liquid states in the two dimensional kagome antiferromagnets, ZnxCu4-x(OD)6Cl2

    Full text link
    A three-dimensional system of interacting spins typically develops static long-range order when it is cooled. If the spins are quantum (S = 1/2), however, novel quantum paramagnetic states may appear. The most highly sought state among them is the resonating valence bond (RVB) state in which every pair of neighboring quantum spins form entangled spin singlets (valence bonds) and the singlets are quantum mechanically resonating amongst all the possible highly degenerate pairing states. Here we provide experimental evidence for such quantum paramagnetic states existing in frustrated antiferromagnets, ZnxCu4-x(OD)6Cl2, where the S = 1/2 magnetic Cu2+ moments form layers of a two-dimensional kagome lattice. We find that in Cu4(OD)6Cl2, where distorted kagome planes are weakly coupled to each other, a dispersionless excitation mode appears in the magnetic excitation spectrum below ~ 20 K, whose characteristics resemble those of quantum spin singlets in a solid state, known as a valence bond solid (VBS), that breaks translational symmetry. Doping nonmagnetic Zn2+ ions reduces the distortion of the kagome lattice, and weakens the interplane coupling but also dilutes the magnetic occupancy of the kagome lattice. The VBS state is suppressed and for ZnCu3(OD)6Cl2 where the kagome planes are undistorted and 90% occupied by the Cu2+ ions, the low energy spin fluctuations in the spin liquid phase become featureless
    corecore