159 research outputs found
Produção e composição quÃmica de seis leguminosas forrageiras no municÃpio de Altamira, Pará.
bitstream/item/33955/1/CPATU-CirTec41.pd
Extensive Investigations on Radial Crack Formation in Labyrinth Seals of Aircraft Engines
Labyrinth seals are due to their non-contact function and their thermal resistance the state of the art in sealing technology for thermal turbomachinery such as jet engines. The purpose of labyrinth seals is to adjust or minimize the leakage between rotor and stator. However, because of transient flight manoeuvres and the resulting mechanical and thermal loads on the components, contact between rotating and stationary parts cannot be ruled out. The aim of this study is to extend the basic understanding of the mechanisms of hot crack formation in the components of a labyrinth seal during the rubbing process. Previous investigations at the Institute of Thermal Turbomachinery have shown that the thermally induced stress caused in connection with the thermal change of the material properties can lead to formation of the cracks in the seal fin. In order to get a deeper understanding of the complex crack initiation mechanisms, it is necessary to carry out fundamental experiments on simplified geometries. For this purpose, the stress conditions of a loaded labyrinth seal are applied to a cylindrical test specimen. It is fixed on both sides and subjected to thermo-cyclic load. To model a rubbing process of a labyrinth seal, the initial temperature of the cycle corresponds to the operating temperature of the rotor in a jet engine and the final temperature corresponds to the contact temperature during the rubbing process. The temperature change causes stress in the specimen due to the rigid mounting. In literature there are analytical considerations regarding the stress-strain curve in the seal fin and a possible pre-damage of the components by remaining tensile stress after the rubbing process. In this paper, these analytical approaches are compared with the test data. Also a residual tensile strength of the seal fin which is still to be tolerated is worked out depending on the temperature load. The stress reduction during heating is very significant and is considered in detail. Due to the high mechanical and thermal loads, the stress reduction is superimposed by relaxation and plastic deformation. For a separate consideration of these basic effects, FE simulations are carried out. The main findings are that stress and strain in the component depends on both the initial and the final temperature of the specimen. The final rubbing temperature mainly influences the remaining tensile stress. With the thus calculated remaining strength of the seal fin a probable crack formation could be determined. The evaluation of this data contributes significantly to the understanding of hot crack formation in labyrinth seal fins and is therefore the basis for the optimization of the sealing system with regard to robustness against rubbing processes
Produção e composição quÃmica de cultivares de capim elefante no municÃpio de Altamira-PA.
bitstream/item/57537/1/Belem-BP1.pd
Melanoma differentiation-associated protein-5 (MDA-5) limits early viral replication but is not essential for the induction of type 1 interferons after Coxsackievirus infection
AbstractCoxsackievirus infections are associated with severe diseases such as myocarditis, meningitis and pancreatitis. To study the contribution of the intracellular viral sensor melanoma differentiation-associated protein-5 (MDA-5) in the host immune response to Coxsackievirus B3 (CVB3) we infected C57BL/6 and 129/SvJ mice lacking mda-5. Mice deficient in MDA-5 showed a dramatically increased susceptibility to CVB3 infection. The loss of MDA-5 allowed the virus to replicate faster, resulting in increased liver and pancreas damage and heightened mortality. MDA-5 was not absolutely required for the induction of type 1 interferons (IFNs), but essential for the production of maximal levels of systemic IFN-α early after infection. Taken together, our findings indicate that MDA-5 plays an important role in the host immune response to CVB3 by preventing early virus replication and limiting tissue pathology
An IFIH1 gene polymorphism associated with risk for autoimmunity regulates canonical antiviral defence pathways in Coxsackievirus infected human pancreatic islets
The IFIH1 gene encodes the pattern recognition receptor MDA5. A common
polymorphism in IFIH1 (rs1990760, A946T) confers increased risk for
autoimmune disease, including type 1-diabetes (T1D). Coxsackievirus
infections are linked to T1D and cause beta-cell damage in vitro. Here
we demonstrate that the rs1990760 polymorphism regulates the interferon
(IFN) signature expressed by human pancreatic islets following
Coxsackievirus infection. A strong IFN signature was associated with
high expression of IFNλ1 and IFNλ2, linking rs1990760 to the expression
of type III IFNs. In the high-responding genotype, IRF-1 expression
correlated with that of type III IFN, suggesting a positive-feedback on
type III IFN transcription. In summary, our study uncovers an influence
of rs1990760 on the canonical effector function of MDA5 in response to
an acute infection of primary human parenchymal cells with a clinically
relevant virus linked to human T1D. It also highlights a previously
unrecognized connection between the rs1990760 polymorphism and the
expression level of type III IFNs.</p
Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection
HIV infection is associated with immune dysfunction, perturbation of immune-cell subsets and opportunistic infections. CD161++ CD8+ T cells are a tissue-infiltrating population that produce IL17A, IL22, IFN, and TNFα, cytokines important in mucosal immunity. In adults they dominantly express the semi-invariant TCR Vα7.2, the canonical feature of mucosal associated invariant T (MAIT) cells and have been recently implicated in host defense against pathogens. We analyzed the frequency and function of CD161++ /MAIT cells in peripheral blood and tissue from patients with early stage or chronic-stage HIV infection. We show that the CD161++ /MAIT cell population is significantly decreased in early HIV infection and fails to recover despite otherwise successful treatment. We provide evidence that CD161++ /MAIT cells are not preferentially infected but may be depleted through diverse mechanisms including accumulation in tissues and activation-induced cell death. This loss may impact mucosal defense and could be important in susceptibility to specific opportunistic infections in HIV
Light-driven chloride transport kinetics of halorhodopsin
Despite growing interest in light-driven ion pumps for use in optogenetics, current estimates of their transport rates span two orders of magnitude due to challenges in measuring slow transport processes and determining protein concentration and/or orientation in membranes in vitro. In this study, we report, to our knowledge, the first direct quantitative measurement of light-driven Cl transport rates of the anion pump halorohodopsin from Natronomonas pharaonis (NpHR). We used light-interfaced voltage clamp measurements on NpHR-expressing oocytes to obtain a transport rate of 219 (± 98) Cl /protein/s for a photon flux of 630 photons/protein/s. The measurement is consistent with the literature-reported quantum efficiency of ∼30% for NpHR, i.e., 0.3 isomerizations per photon absorbed. To reconcile our measurements with an earlier-reported 20 ms rate-limiting step, or 35 turnovers/protein/s, we conducted, to our knowledge, novel consecutive single-turnover flash experiments that demonstrate that under continuous illumination, NpHR bypasses this step in the photocycle
Npl3 functions in mRNP assembly by recruitment of mRNP components to the transcription site and their transfer onto the mRNA
RNA-binding proteins (RBPs) control every RNA metabolic process by multiple protein-RNA and protein-protein interactions. Their roles have largely been analyzed by crude mutations, which abrogate multiple functions at once and likely impact the structural integrity of the large ribonucleoprotein particles (RNPs) these proteins function in. Using UV-induced RNA-protein crosslinking of entire cells, protein complex purification and mass spectrometric analysis, we identified >100 in vivo RNA crosslinks in 16 nuclear mRNP components in Saccharomyces cerevisiae. For functional analysis, we chose Npl3, which displayed crosslinks in its two RNA recognition motifs (RRMs) and in the connecting flexible linker region. Both RRM domains and the linker uniquely contribute to RNA recognition as revealed by NMR and structural analyses. Interestingly, mutations in these regions cause different phenotypes, indicating distinct functions of the different RNA-binding domains. Notably, an npl3-Linker mutation strongly impairs recruitment of several mRNP components to chromatin and incorporation of other mRNP components into nuclear mRNPs, establishing a so far unknown function of Npl3 in nuclear mRNP assembly. Taken together, our integrative analysis uncovers a specific function of the RNA-binding activity of the nuclear mRNP component Npl3. This approach can be readily applied to RBPs in any RNA metabolic process
Plant cell culture technology in the cosmetics and food industries : current state and future trends
The production of drugs, cosmetics, and food which are derived from plant cell and tissue cultures has a long tradition. The emerging trend of manufacturing cosmetics and food products in a natural and sustainable manner has brought a new wave in plant cell culture technology over the past 10Â years. More than 50 products based on extracts from plant cell cultures have made their way into the cosmetics industry during this time, whereby the majority is produced with plant cell suspension cultures. In addition, the first plant cell culture-based food supplement ingredients, such as Echigena Plus and Teoside 10, are now produced at production scale. In this mini review, we discuss the reasons for and the characteristics as well as the challenges of plant cell culture-based productions for the cosmetics and food industries. It focuses on the current state of the art in this field. In addition, two examples of the latest developments in plant cell culture-based food production are presented, that is, superfood which boosts health and food that can be produced in the lab or at home
- …