641 research outputs found
Optimality of Gaussian Attacks in Continuous Variable Quantum Cryptography
We analyze the asymptotic security of the family of Gaussian modulated
Quantum Key Distribution protocols for Continuous Variables systems. We prove
that the Gaussian unitary attack is optimal for all the considered bounds on
the key rate when the first and second momenta of the canonical variables
involved are known by the honest parties.Comment: See also R. Garcia-Patron and N. Cerf, quant-ph/060803
Robust and Efficient Sifting-Less Quantum Key Distribution Protocols
We show that replacing the usual sifting step of the standard
quantum-key-distribution protocol BB84 by a one-way reverse reconciliation
procedure increases its robustness against photon-number-splitting (PNS)
attacks to the level of the SARG04 protocol while keeping the raw key-rate of
BB84. This protocol, which uses the same state and detection than BB84, is the
m=4 member of a protocol-family using m polarization states which we introduce
here. We show that the robustness of these protocols against PNS attacks
increases exponentially with m, and that the effective keyrate of optimized
weak coherent pulses decreases with the transmission T like T^{1+1/(m-2)}
Experimental study on discretely modulated continuous-variable quantum key distribution
We present a discretely modulated continuous-variable quantum key
distribution system in free space by using strong coherent states. The
amplitude noise in the laser source is suppressed to the shot-noise limit by
using a mode cleaner combined with a frequency shift technique. Also, it is
proven that the phase noise in the source has no impact on the final secret key
rate. In order to increase the encoding rate, we use broadband homodyne
detectors and the no-switching protocol. In a realistic model, we establish a
secret key rate of 46.8 kbits/s against collective attacks at an encoding rate
of 10 MHz for a 90% channel loss when the modulation variance is optimal.Comment: 7 pages,6 figure
Quantum Communication with an Accelerated Partner
An unsolved problem in relativistic quantum information research is how to
model efficient, directional quantum communication between localised parties in
a fully quantum field theoretical framework. We propose a tractable approach to
this problem based on solving the Heisenberg evolution of localized field
observables. We illustrate our approach by analysing, and obtaining approximate
analytical solutions to, the problem of communicating coherent states between
an inertial sender, Alice and an accelerated receiver, Rob. We use these
results to determine the efficiency with which continuous variable quantum key
distribution could be carried out over such a communication channel.Comment: Additional explanatory text and typo in Eq.17 correcte
Multipartite Continuous Variable Solution for the Byzantine Agreement Problem
We demonstrate that the Byzantine Agreement (detectable broadcast) is also
solvable in the continuous-variable scenario with multipartite entangled
Gaussian states and Gaussian operations (homodyne detection). Within this
scheme we find that Byzantine Agreement requires a minimum amount of
entanglement in the multipartite states used in order to achieve a solution. We
discuss realistic implementations of the protocol, which consider the
possibility of having inefficient homodyne detectors, not perfectly correlated
outcomes, and noise in the preparation of the resource states. The proposed
protocol is proven to be robust and efficiently applicable under such non-ideal
conditions.Comment: This paper supersedes and extends arXiv:quant-ph/0507249, title
changed to match the published version, 11 pages, 3 figures, published
versio
Experimental investigation of the stochastic early flame propagation after ignition by a low-energy electrical discharge
In the context of explosion protection, very conservative safety factors need to be considered, e.g. in the design of electrical devices. This is due to standards which are mainly based on empirical data as opposed to a detailed knowledge of the underlying physiochemical processes. In this work, the early phase of ignition of burnable gas mixtures close to their respective minimum ignition energy is investigated experimentally by means of high-speed schlieren imaging. Our data quantifies how the ignition process at such low energies becomes less repeatable which is evidenced by a high scattering of the flame propagation. It was found that, depending on the mixture, the flow field induced by the electrical discharge may exhibit a considerable effect on the ignition process. This effect is more pronounced for mixtures which are characterized by a large Lewis number, thus, leading to a more random flame propagation
Entanglement verification for quantum key distribution systems with an underlying bipartite qubit-mode structure
We consider entanglement detection for quantum key distribution systems that
use two signal states and continuous variable measurements. This problem can be
formulated as a separability problem in a qubit-mode system. To verify
entanglement, we introduce an object that combines the covariance matrix of the
mode with the density matrix of the qubit. We derive necessary separability
criteria for this scenario. These criteria can be readily evaluated using
semidefinite programming and we apply them to the specific quantum key
distribution protocol.Comment: 6 pages, 2 figures, v2: final versio
Prediction and Measurement of the local extinction coefficient in sprays for 3D simulation/experiment data comparison
AbstractIn the recent years, large progresses in laser imaging techniques have allowed to extract spatially resolved 2D and 3D quantitative spray information even in optically dense situations. The main breakthrough of these techniques is the possibility of suppressing unwanted effects from multiple light scattering using Structured Illumination. Thanks to this new feature, effects due to light extinction can also be corrected allowing the measurement of the local extinction coefficient. These quantitative information which is available even in challenging conditions, where Phase Doppler does not work anymore, can be used for data comparison between experiment and simulation. The local extinction coefficient is particularly valuable for the description of the droplet field, defined as the “spray region”, as it contains information related to both droplets size and concentration. In this article we detail, then, the procedure enabling the modelers to obtain numerically this local extinction coefficient over the full 3D spray system. Following this procedure, results can now be adequately compared between simulation and experiment. The proposed comparison approach can better guide model adjustments in situation where the initial droplet size distribution is unknown or approximated and presents a step towards future validations of spray simulations, especially those based on Lagrangian Particle Tracking. The approach is exemplified here for the case of a Diesel-type spray. The results reveal at which specific spray locations discrepancies occur, and highlight the sensitivity of the initial droplet size distribution on the resulting extinction coefficient
Continuous-Variable Quantum Key Distribution using Thermal States
We consider the security of continuous-variable quantum key distribution
using thermal (or noisy) Gaussian resource states. Specifically, we analyze
this against collective Gaussian attacks using direct and reverse
reconciliation where both protocols use either homodyne or heterodyne
detection. We show that in the case of direct reconciliation with heterodyne
detection, an improved robustness to channel noise is achieved when large
amounts of preparation noise is added, as compared to the case when no
preparation noise is added. We also consider the theoretical limit of infinite
preparation noise and show a secure key can still be achieved in this limit
provided the channel noise is less than the preparation noise. Finally, we
consider the security of quantum key distribution at various electromagnetic
wavelengths and derive an upper bound related to an entanglement-breaking
eavesdropping attack and discuss the feasibility of microwave quantum key
distribution.Comment: 12 pages, 11 figures. Updated from published version with some minor
correction
Quantum key distribution using gaussian-modulated coherent states
Quantum continuous variables are being explored as an alternative means to
implement quantum key distribution, which is usually based on single photon
counting. The former approach is potentially advantageous because it should
enable higher key distribution rates. Here we propose and experimentally
demonstrate a quantum key distribution protocol based on the transmission of
gaussian-modulated coherent states (consisting of laser pulses containing a few
hundred photons) and shot-noise-limited homodyne detection; squeezed or
entangled beams are not required. Complete secret key extraction is achieved
using a reverse reconciliation technique followed by privacy amplification. The
reverse reconciliation technique is in principle secure for any value of the
line transmission, against gaussian individual attacks based on entanglement
and quantum memories. Our table-top experiment yields a net key transmission
rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per
second for a line with losses of 3.1 dB. We anticipate that the scheme should
remain effective for lines with higher losses, particularly because the present
limitations are essentially technical, so that significant margin for
improvement is available on both the hardware and software.Comment: 8 pages, 4 figure
- …