4,986 research outputs found

    Intermodal entanglement in Raman processes

    Full text link
    The operator solution of a completely quantum mechanical Hamiltonian of the Raman processes is used here to investigate the possibility of obtaining intermodal entanglement between different modes involved in the Raman processes (e.g. pump mode, Stokes mode, vibration (phonon) mode and anti-Stokes mode). Intermodal entanglement is reported between a) pump mode and anti-Stokes mode, b) pump mode and vibration (phonon) mode c) Stokes mode and vibration phonon mode, d) Stokes mode and anti-stokes mode in the stimulated Raman processes for the variation of the phase angle of complex eigenvalue α1\alpha_{1} of pump mode aa. Some incidents of intermodal entanglement in the spontaneous and the partially spontaneous Raman processes are also reported. Further it is shown that the specific choice of coupling constants may produce genuine entanglement among Stokes mode, anti-Stokes mode and vibration-phonon mode. It is also shown that the two mode entanglement not identified by Duan's criterion may be identified by Hillery-Zubairy criteria. It is further shown that intermodal entanglement, intermodal antibunching and intermodal squeezing are independent phenomena.Comment: 11 pages, 4 figure

    Quantum oscillator on complex projective space (Lobachewski space) in constant magnetic field and the issue of generic boundary conditions

    Full text link
    We perform a 1-parameter family of self-adjoint extensions characterized by the parameter ω0\omega_0. This allows us to get generic boundary conditions for the quantum oscillator on NN dimensional complex projective space(CPN\mathbb{C}P^N) and on its non-compact version i.e., Lobachewski space(LN\mathcal L_N) in presence of constant magnetic field. As a result, we get a family of energy spectrums for the oscillator. In our formulation the already known result of this oscillator is also belong to the family. We have also obtained energy spectrum which preserve all the symmetry (full hidden symmetry and rotational symmetry) of the oscillator. The method of self-adjoint extensions have been discussed for conic oscillator in presence of constant magnetic field also.Comment: Accepted in Journal of Physics

    Optical pulse characteristics of sonoluminescence at low acoustic drive levels

    Get PDF
    From a nonaqueous alkali-metal salt solution, it is possible to observe sonoluminescence (SL) at low acoustic drive levels with the ratio of the acoustic pressure amplitude to the ambient pressure being about 1. In this case, the emission has a narrowband spectral content and consists of a few flashes of light from a levitated gas bubble going through an unstable motion. A systematic statistical study of the optical pulse characteristics of this form of SL is reported here. The results support our earlier findings [Phys. Rev. E 58, R2713 (1998)], but in addition we have clearly established a variation in the optical pulse duration with certain physical parameters such as the gas thermal conductivity. Quantitatively, the SL optical pulse width is observed to vary from 10 ns to 165 ns with the most probable value being 82 ns, for experiments with krypton-saturated sodium salt ethylene glycol solution. With argon, the variation is similar to that of krypton but the most probable value is reduced to 62 ns. The range is significantly smaller with helium, being from 22 ns to 65 ns with the most probable value also being reduced to 42 ns. The observed large variation, for example with krypton, under otherwise fixed controllable experimental parameters indicates that it is an inherent property of the observed SL process, which is transient in nature. It is this feature that necessitated our statistical study. Numerical simulations of the SL process using the bubble dynamics approach of Kamath, Prosperetti, and Egolfopoulos [J. Acoust. Soc. Am. 94, 248 (1993)] suggest that a key uncontrolled parameter, namely the initial bubble radius, may be responsible for the observations. In spite of the fact that certain parameters in the numerical computations have to be fixed from a best fit to one set of experimental data, the observed overall experimental trends of optical pulse characteristics are predicted reasonably well

    A Hierarchical Spatio-Temporal Statistical Model Motivated by Glaciology

    Get PDF
    In this paper, we extend and analyze a Bayesian hierarchical spatio-temporal model for physical systems. A novelty is to model the discrepancy between the output of a computer simulator for a physical process and the actual process values with a multivariate random walk. For computational efficiency, linear algebra for bandwidth limited matrices is utilized, and first-order emulator inference allows for the fast emulation of a numerical partial differential equation (PDE) solver. A test scenario from a physical system motivated by glaciology is used to examine the speed and accuracy of the computational methods used, in addition to the viability of modeling assumptions. We conclude by discussing how the model and associated methodology can be applied in other physical contexts besides glaciology.Comment: Revision accepted for publication by the Journal of Agricultural, Biological, and Environmental Statistic

    Virtual Reality

    Full text link
    This analysis paper provides a brief survey of the sector of computer game, application domains, technological demand and presently accessible resolution. It additionally presents the background and motivation of virtual surroundings analysis and identifies typical application domains. It additionally surveys current input/output devices of computer game

    Grid-connected of photovoltaic module using nonlinear control

    Get PDF
    corecore