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Abstract

In this paper, we extend and analyze a Bayesian hierarchical spatio-temporal model for physical

systems. A novelty is to model the discrepancy between the output of a computer simulator for a physical

process and the actual process values with a multivariate random walk. For computational efficiency,

linear algebra for bandwidth limited matrices is utilized, and first-order emulator inference allows for the

fast emulation of a numerical partial differential equation (PDE) solver. A test scenario from a physical

system motivated by glaciology is used to examine the speed and accuracy of the computational methods

used, in addition to the viability of modeling assumptions. We conclude by discussing how the model

and associated methodology can be applied in other physical contexts besides glaciology.

Keywords: model discrepancy, uncertainty quantification, emulation.
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1 Introduction

Scientists and engineers often study a physical system with the goal of making spatio-temporal predictions

(e.g., temperature or glacier thickness) and inferring unknown quantities governing the system (e.g., atmo-

spheric density or ice viscosity). This system’s dynamics can often be phrased in terms of spatio-temporal

partial differential equations (PDEs) that are based on approximations. The scientist or engineer may also

be able to simulate the physical system with a computer simulator, such as a numerical PDE solver, which is

subject to imperfections (e.g., numerical error). Moreover, the scientific constants entering into the system’s

dynamical equations such as density, friction, or viscosity may not be known precisely, but their range can

be constrained to some set of plausible values. Additionally field data, though potentially scarce and noisy,

can be incorporated into the analysis.

Such scenarios can be modeled with a variant of a Bayesian hierarchical spatio-temporal model that was

introduced in Gopalan et al. (2018) for glacial dynamics, if considered more generally. We delineate three

methods to make posterior inference efficient: the first is to utilize bandwidth limited linear-algebraic routines

for likelihood evaluation (Rue, 2001), the second is to utilize an embarrassingly parallel approximation to

the likelihood, and the third is to use first-order emulators (Hooten et al., 2011) for speeding up computer

simulators. Though our modeling and numerical results are still within a glaciology context, we conclude

with a discussion of how the model can be applied to other physical scenarios. Before introducing the

Bayesian hierarchical model and associated methodology for computationally efficient posterior inference, it

is appropriate to summarize relevant statistical literature developed over the last two decades.

Bayesian hierarchical modeling for geophysical problems was introduced in Berliner (1996) andWikle et al.

(1998), and summarized in Berliner (2003), Cressie and Wikle (2011), and Wikle (2016). In this modeling

approach, prior distributions are specified for physical parameters of interest, a physical process is modeled

at the intermediary, latent level (conditional on the physical parameters), and the data collection process

is modeled conditional on the latent physical process values. Both numerical error and model uncertainty

can be incorporated at the process level, while measurement errors can be modeled at the data level. This

approach has been applied in a variety of scientific contexts, including the study of ozone concentrations

(Berrocal et al., 2014), sediment loads at the Great Barrier Reef (Pagendam et al., 2014), precipitation in

Iceland (Sigurdarson and Hrafnkelsson, 2016), Antarctic contributions to sea level rise (Zammit-Mangion

et al., 2014), and tropical ocean surface winds (Wikle et al., 2001) (among many others). In Gopalan et al.

(2018), the motivating example for the work in this paper, a Bayesian hierarchical model for shallow glaciers

based on the shallow ice approximation (SIA) PDE was developed and evaluated.

Kennedy and O’Hagan (2001) suggest constructing Bayesian statistical models that incorporate the
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output of a computer simulator of a physical process, such as a numerical solver for the underlying system

of PDEs. Fundamental to their approach is the inclusion of a specific term that represents the deviation

between the output of a computer simulator and the actual process values, known as model discrepancy

or model inadequacy. This framework is developed in Higdon et al. (2004), Higdon et al. (2008), and

Brynjarsdóttir and O’Hagan (2014). In particular, Higdon et al. (2008) use a Bayesian model along with

a principal components based approach for reducing the computational overhead of running a computer

simulation with high dimensional output multiple times (an approach termed as emulation). Brynjarsdóttir

and O’Hagan (2014) note that the prior for model discrepancy must be chosen carefully to mitigate bias of

physical parameters and predictions. In particular, as more prior information is incorporated into a model

discrepancy term through a constrained Gaussian process (GP) prior over a space of functions, the less

biased inferences and predictions tend to become. The notions of an emulator, a computer simulator, and

model discrepancy enter naturally into the aforementioned Bayesian hierarchical framework. Conditional

on physical parameters coupled with initial and/or boundary conditions, the physical process values at the

latent level can be written as the sum of a computer simulator or emulator term and a model discrepancy

term.

To be precise, let us assume that the physical process S can be indexed through time, i.e., as Sj , and Sj

is a vector where each element corresponds to a distinct spatial location. One can specify the process level

conditional on physical parameter θ as

Sj = f(θ, j) + δ(j) (1)

where δ(.) is a vector valued model discrepancy function that is independent of θ, and f(θ, j) is the output

of a computer simulation or emulator for physical parameter θ at time index j. If, for instance, at each time

point j an observation Yj of Sj is made with associated measurement error ηj , then observations can be

written as

Yj = f(θ, j) + δ(j) + ηj , (2)

which is analogous to Eq. 5 of Kennedy and O’Hagan (2001).

In Kennedy and O’Hagan (2001), δ(.) is a fixed but unknown function independent of θ that is learned

with a GP prior distribution. Similarly, δ(.) has a constrained GP prior in Brynjarsdóttir and O’Hagan

(2014). The approach in this paper instead assumes a temporally indexed stochastic process (with spatial

correlation) that follows a multivariate random walk, rather than a deterministic function. Additionally,
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in Liu and West (2009), the authors frame a computer emulator of time series run under multiple inputs

as a dynamic linear model (DLM). As part of their approach, they allow for time varying auto-regressive

coefficients that follow a random walk process, to embed non-stationarity into the model.

While the approach taken in this paper most closely follows the above literature (i.e., Bayesian hierarchi-

cal modeling, model discrepancy, and emulation), we briefly review literature in probabilistic numerics and

Bayesian numerical analysis; the emphasis in Bayesian numerical analysis is to use probabilistic methods to

solve numerical problems, whereas, in the Bayesian hierarchical setup, one is also interested in inference of

scientifically relevant parameters and predictions of the physical process. In Conrad et al. (2017), a prob-

abilistic ordinary differential equation (ODE) solver is developed that adds stochasticity at each iteration;

conditions for the convergence of this method to the ODE solution are given. Chkrebtii et al. (2016) uti-

lize GPs for solving ODEs; moreover, Calderhead et al. (2008) use a GP regression based method to avoid

explicitly solving nonlinear ODEs when performing inference for parameters that provides computational

speed ups; additionally, Owhadi and Scovel (2017) present a gamblet based solver that comes with provably

computationally efficient solutions to PDEs. The approach is derived from a game theoretic and stochastic

PDE framework.

In the spatio-temporal model described in this paper, stochasticity is induced with an error-correcting

process that is separated from the numerical solution. In general, another way to achieve this is to define

a stochastic process by equating a PDE to a white noise term – that is, the solution X to a stochastic

partial differential equation (SPDE) L[X] = W , where L is a differential operator and W is a white noise

process (indexed by spatio-temporal coordinates). For instance, a fractional Laplacian operator yields the

Matérn covariance function (Whittle, 1954, 1963; Lindgren et al., 2011). We employ the former approach

mainly because it is difficult to derive exact covariance functions for arbitrary differential equations (e.g., in

the presence of nonlinearities), though we highlight the utility of the latter approach in situations where an

analytical covariance function can be derived exactly.

A major feature of this work is to represent the discrepancy between real physical process values and the

output of a computer simulator for these physical process values as a multivariate random walk; typically,

model discrepancy is endowed with a GP prior or a constrained GP prior over a space of functions as

in Kennedy and O’Hagan (2001) and Brynjarsdóttir and O’Hagan (2014). Along with this model is the

development of two ways for making computations faster: the first is harnessing first-order emulator inference

(Hooten et al., 2011) for speeding up the computation of a numerical solver, and the second is the use of

bandwidth limited numerical linear algebra (Rue, 2001) for computing the likelihood efficiently. Moreover,

in the regime of a high signal-to-noise ratio, an embarrassingly parallel approximation to the likelihood can

be employed. Finally, methodology to fit a spatial Gaussian field for the log of the scale of numerical errors
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is discussed.

We must also be clear about what distinguishes this work from its predecessor, Gopalan et al. (2018).

This includes the use of emulators, probing higher order random walks besides order 1, derivation of sparsity

and computational complexity of log-likelihood evaluation, empirical run time results, and methodology to

fit an error-correcting process when little prior information is available. The structure of this paper is as

follows: First a test system from glaciology is described. Then the statistical model that is the focus of this

work is presented in detail (in the context of the glaciology test case), followed by the exact and approximate

likelihood. Then this model is analyzed in terms of computational run time and accuracy of inference, based

on the test system from glaciology; moreover, the random walk error-correcting process is assessed with

residual analysis. Afterward, we discuss how the model and associated methodology can be applied to other

physical scenarios, and conclude by summarizing the model, method, and limitations of the approach.

2 Description of a test system from glaciology

Before delving into the specifics of the Bayesian hierarchical model and computational subtleties, we begin

with a brief discussion of glaciology. Glaciology is the study of physical systems consisting mostly of ice

and snow. This broad definition includes the study of the crystalline nature of ice, the transformation and

compaction of snow into ice, the dynamics of the flow of ice and water in a glacier, the relationships between

fundamental quantities like viscosity, temperature, and pressure, the relationships between precipitation

and meteorology with said ice systems, the interaction of ice systems with other geological systems such as

volcanoes and bedrock, and so on. As such, glaciology synthesizes elements from a multitude of scientific

disciplines including continuum mechanics, fluid mechanics, hydraulics, chemistry, and meteorology.

Bueler et al. (2005) introduce analytical solutions for the SIA PDE, a commonly used model for the

dynamics of glaciers (Fowler and Larson, 1978; Hutter, 1982; Flowers et al., 2005; Cuffey and Paterson,

2010; van der Veen, 2013; Brinkerhoff et al., 2016; Guan et al., 2016; Gopalan et al., 2018). Based on the

principle of conservation of mass, the SIA dictates that glacier flow is in the direction of the (negative)

gradient of the glacier surface and is due to gravity and basal sliding (also referred to as friction or drag if

in the direction of the positive gradient). While an explanation of the SIA PDE is given in Gopalan et al.

(2018), our focus is on ice viscosity, B. Intuitively, this parameter controls the softness of the ice. The

other main physical parameter, which is not the subject of this paper, is C0γ. This controls basal sliding or

friction.

For the analysis that follows, we focus on a periodic solution to the SIA in which the thickness of the

glacier oscillates through time; H(r, t), the thickness of the glacier as a function of two dimensional space
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(in polar coordinates) and time, is

H(r, t) = Hs(r) + P (r, t), (3)

P (r, t) = Cp sin(2πt/Tp) cos2

[
π(r − 0.6L)

.6L

]
; if 0.3L < r < .9L, (4)

P (r, t) = 0; if 0 ≤ r ≤ 0.3L or if r ≥ 0.9L. (5)

In Eq. 3, Hs is a static initial profile of the glacier (i.e., a dome as in Eq. 21 of Bueler et al. (2005)), P

is a perturbation (e.g., precipitation) function, L is the margin length, Cp is the magnitude of the periodic

perturbation, and Tp is the period of the perturbation. Bueler et al. (2005) derive a mass balance function

that achieves this periodic solution for the SIA PDE. Qualitatively, this test case appears like a dome with

a periodic oscillation in thickness around an annulus defined by 0.3L < r < .9L. In Figure 1, an illustration

of the oscillations of glacier thickness through time is displayed.

The value of each surface elevation measurement is the value of the exact analytical solution above added

to a zero-mean Gaussian random variable with standard deviation of 1 meter, larger than errors of the

digital-GPS instruments employed by the UI-IES. We use the same values of parameters as in Bueler et al.

(2005) to make for easier comparison to that work and the EISMINT experiment. In particular, H0 = 3600

m, L = 750 km, Cp = 200 m, and Tp = 5000 years.

Employing the same set up as Gopalan et al. (2018), glacial surface elevation measurements are assumed

to be collected for 20 years, twice a year, and at 25 fixed spatial locations across the glacier, to emulate

how the glaciology team at the University of Iceland Institute of Earth Sciences (UI-IES) collects data at

Icelandic glaciers (e.g., see Figure 2 illustrating Langjökull and the mass balance measurement sites).

3 The hierarchical spatio-temporal model and its properties

Now that we have acquainted the reader with some facts about glaciology and the particular test case used

for the analysis in this paper, we next delineate the hierarchical spatio-temporal model that is the focus

of this work, by specifying its variables, parameters, and properties, including efficient computation of the

likelihood and connections to other modeling frameworks. For the sake of specificity of the presentation, the

glaciology example is referenced, similarly to the set up in Gopalan et al. (2018). We assume that n spatial

locations are modeled at the latent level, and m of those locations are observed, where m is typically much

smaller than n. We use the index j to refer to time indices and i to refer to spatial indices; while space

and time are discretized, the differences between successive time and spatial points can be made as small

as desired depending on the context of the application and computational resources available. Throughout,
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Figure 1: An illustration of the periodic oscillatory exact solution to the SIA PDE that is used for the
analysis. Since the solution is radially symmetric, only a radial cross section is illustrated. This solution is
stationary except for an annulus defined by 0.3L < r < .9L, where L is 750 km; in the annulus, the glacier
thickness vibrates back and forth periodically, as illustrated.

Figure 2: A digital elevation map of Langjökull along with measurement sites demarcated on the right,
provided by the University of Iceland Institute of Earth Sciences (UI-IES). Langjökull is Iceland’s second
largest glacier by area, at 900 sq. km, and its mean thickness is 210 meters above sea level (Björnsson and
Pálsson, 2008), so Langjökull is shallow.

we use bolded notation for vectors and uppercase, unbolded, and non-italic notation for matrices. All other

mathematical symbols are scalars.

We introduce the Bayesian hierarchical model in the parameter, process, data level framework of Berliner

(1996). We denote the physical parameters as θ and initial and/or boundary conditions for the physical

process as φ. At the parameter level, one possibility is to use a truncated normal distribution for θ if the

support of the parameter value can be constrained, as was done in Gopalan et al. (2018), where θ represented

ice viscosity. However, more generally, the distribution can be specified based on domain knowledge or
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expertise. We denote the output of a computer simulator, which could be either a numerical solver or an

emulator, at time j with the notation f(θ,φ, j), which, in full generality, is an element of Rn. While some

values could be negative (e.g., temperature), in many cases the computer simulator output can be restricted

to the nonnegative real numbers. For a specific example, in Appendix A of Gopalan et al. (2018), f(θ,φ, j) is

a second-order finite difference solver for glacier thickness, which is constrained to be nonnegative based on a

boundary condition. Evidence for a nonnegative support for the physical process, in glaciology, can be found

in Gopalan et al. (2018). Particularly, this is evident in Figure 6 of that paper, which shows the process (i.e.,

glacier thickness) predictions across the glacier, and the distributions are all greater than zero. Specifically,

the minimum of the smallest box-plot is more than 750 m. Nonetheless, the reader is suggested to think

carefully about whether a negligible amount of probability mass is below zero in different applications (e.g.,

temperature models).

The process level of the model, conditional on θ and φ, can be written as:

Xj = Xj−1 + εj , (6)

Sj = f(θ,φ, j) +Xj , (7)

where X0 is a vector of zeros.

In the above expressions, εj is MVN(0,Σ) and independent of εl for j 6= l. Furthermore,Xj , εj , f(θ,φ, j),

and (consequently) Sj are members of Rn. In Gopalan et al. (2018), {X1,X2, ..., } was referred to as an

error-correcting process because it was meant to represent the difference between the numerical solver and

the exact solution to the SIA PDE. Note that in Gopalan et al. (2018), Sj referred to glacial thickness at a

particular time point, where each component referred to the glacial thickness at a particular grid point. In

more generality, the error-correcting statistical process can be a random walk of higher order; a multivariate

RW process of order q (RW (q)) is given by:

Xj +

q∑
p=1

(−1)p
(
q

p

)
Xj−p = εj (8)

where ε1,..., εq are independent and marginally MVN(0,Σ). This form of a higher order random walk is a

multivariate extension of the integrated auto-regressive process given in Chapter 5.6 of Madsen (2007). For

q = 2, this corresponds to RW(2) of Rue and Held (2005).

At the data level, it is assumed that data are regularly sampled at every k-th time point, so that one

observes Yk,Y2k, ...,YNk ∈ Rm; in the glaciology test case, the variables Y referred to glacial surface elevation
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measurements, and k was set to 5, to represent the fact that the glaciologists take a set of measurements

in the summer and winter, or twice a year. The corresponding observation errors ηk,η2k, ...,ηNk are IID

MVN(0, σ2I), and represent digitial-GPS measurement errors in the glaciology example. We define the

matrix A ∈ Rm×n to be such that its rows are unit basis vectors (i.e., an incidence matrix as in Cressie and

Wikle (2011)). That is, Aab = 1 if and only if the bth index of the process level vector S has been observed,

and Aab = 0 for all other entries. Then the data level model, conditional on the process S, is

Yck = ASck + ηck, (9)

where we assume that j ∈ {1, 2, ..., T} and c ∈ {1, 2, ..., N}, so there are N total observed spatial vectors,

observed with a period of length k.

Conditional on θ, φ, and a computer simulator, the model can be thought of as a hidden Markov model

(HMM) (Baum and Petrie, 1966); the latent physical process evolves according to a RW(1) process added

to a numerical solution, and it is observed indirectly with Gaussian noise. It can also be thought of as a

conditional general state space model. This is because, conditioning on θ, φ, and a computer simulator, one

can write:

Sj = Sj−1 + [−f(θ,φ, j − 1) + f(θ,φ, j)] + εj , (10)

Yck = ASck + ηck. (11)

Here, the state evolves linearly with a time dependent offset term: [−f(θ,φ, j−1)+f(θ,φ, j)]. The notation

ck is used in Eq. 11 to indicate that observations of the process are only observed every kth time point,

whereas the latent process evolves at every time step j. The reader who is interested in further understanding

the connection between Gaussian processes and state space models may consult Solin and Särkkä (2014).

3.1 Exact likelihood

An advantage of using this model is that the likelihood, p(Yk,Y2k, ...,YNk|θ,φ), can be computed exactly in

an efficient manner. It can also be approximated in a way that leads to embarrassingly parallel computation

when the signal-to-noise ratio is high. The next several sections provide more details for these considerations.
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The likelihood of the model, L(θ,φ) = p(Yk,Y2k, ...,YNk|θ,φ), has a multivariate normal PDF form:

L(θ,φ) =
1

(2π)(mN)/2|Σl|1/2
exp−(Y−µl)

T Σ−1
l (Y−µl)/2, (12)

where the mean is:

µl = (Af(θ,φ, k), ...,Af(θ,φ, Nk)), (13)

and the covariance matrix is:

Σl = U⊗V + σ2I, (14)

where Uab = kmin(a, b) with U ∈ RN×N , and V = AΣAᵀ. Also, the symbol ⊗ stands for the Kronecker

product. Yck is multivariate normal (conditioning on θ and φ) as a direct consequence of equations 7

and 9, noting that Xck and ηck are independent conditional on θ and φ. Moreover, the linearity prop-

erty of expectations can be used to show that the mean of Yck is E[ASck + ηck] = E[ASck] + E[ηck] =

E[Af(θ,φ, ck) + AXck] + E[ηck] = E[Af(θ,φ, ck)] + E[AXck] + E[ηck] = Af(θ,φ, ck) + 0 + 0 (again,

conditional on fixed θ and φ fixed). Appendix A contains more details of the covariance matrix.

Since evaluating Eq. 12 requires the calculation of the inverse of the matrix Σl and its determinant,

these must be calculated efficiently (generally this takes O(N3m3) operations, which can grow very quickly

with more space and time observations). Since U−1 is tridiagonal, the bandwidth of U−1 is 1, and the band-

limited nature of U−1 allows us to compute Σ−1
l and |Σl| in O(Nm3) time (Rue, 2001; Golub and Van Loan,

2012). More details for this derivation are given in Appendix A. While using band-limited linear algebra

routines can improve computation, in the next subsection we derive an approximation to the likelihood that

is embarrassingly parallel and can therefore accelerate computation even more.

3.2 An approximate likelihood

Here we show how to approximate the likelihood in a way that leads to embarrassingly parallel computation.

The likelihood p(Yk, ..., YNk|θ,φ) can be equivalently written as p(Yk|θ,φ)p(Y2k|Yk,θ,φ)...

p(YNk|Yk, .., Y(N−1)k,θ,φ). First note that:

Yk = Af(θ,φ, k) + ηk +

k∑
j=1

Aεj . (15)
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Hence, p(Yk|θ,φ) is multivariate normal with mean Af(θ,φ, k) and covariance matrix A(kΣ)Aᵀ+σ2I. More

generally, we have the relationship:

Yck = Y(c−1)k + A[f(θ,φ, ck)− f(θ,φ, (c− 1)k)] + ηck − η(c−1)k +

ck∑
j=(c−1)k+1

Aεj . (16)

Thus we can approximate p(Yck|Yk, ..,Y(c−1)k,θ,φ) as a MVN distribution with mean Y(c−1)k+A[f(θ,φ, ck)−

f(θ,φ, (c−1)k)] and covariance matrix A(kΣ)Aᵀ+2σ2I. Nonetheless, to clarify, p(Yck|Yk, ..,Y(c−1)k,θ,φ) is

not exactly a MVN with mean Y(c−1)k +A[f(θ,φ, ck)−f(θ,φ, (c−1)k)] and covariance matrix A(kΣ)Aᵀ +

2σ2I because Y(c−1)k and η(c−1)k are dependent. However, when the magnitude of the observation error

η(c−1)k is much smaller in comparison to the magnitude of the observation Y(c−1)k, and for Z ∼ MVN(0, σ2I)

with Z independent of Y(c−1)k, Y(c−1)k − η(c−1)k ≈ Y(c−1)k −Z.

This approximation is embarrassingly parallel because each of the N terms in the product form of the

likelihood p(Yk, ...,YT |θ,φ) = p(Yk|θ,φ)p(Y2k|Yk,θ,φ)...p(YNk|Yk, ..,Y(N−1)k,θ,φ) (or sum, if computing

the log-likelihood) can be evaluated independently of each other. Therefore, in parallel, the computation

comes down to evaluating a multivariate normal PDF of dimension m – this can be done in O(m3).

3.3 Computational complexity summary

If no attention is paid to the structure of Σl, the cost of evaluating L(θ,φ) is limited by the evaluation

of Σ−1
l and |Σl|, which generally takes O(N3m3) operations. However, the exact likelihood evaluation can

be reduced to O(Nm3) using band-limited numerical linear algebra. The computational complexity of the

approximation is also O(Nm3) (if no parallelism is used). While an exact likelihood is preferred to an

approximation, a benefit of the approximation is that it is embarrassingly parallel – if parallelized, the time

complexity is that of evaluating a multivariate normal PDF of dimension m, which is O(m3). Nonetheless,

there also exist parallel versions of sparse Cholesky decomposition, for instance in Gupta and Kumar (1994).

Empirical comparisons of the exact and approximate likelihood computations are presented in Section 4.

4 Analysis of the model and associated methodology

The purpose of this section is to motivate the various modeling choices introduced in this paper using the

previously described test system from glaciology, both in terms of computational run time and quality of

inferences. In particular, we compare a posterior based on an emulator to a posterior based on a numerical

PDE solver, motivate the use of the random walk error-correcting process with residual analysis, examine the

impact of prior information encoded into the error-correcting process on the bias of posterior distributions
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for physical parameters, and compare the run-time and accuracy of the likelihood approximation versus the

exact likelihood. The physical parameter of interest in these examples is ice viscosity, B, whose actual value

is the same as Bueler et al. (2005), Payne et al. (2000), and Gopalan et al. (2018): 31.7× 10−25 in units of

s−1Pa−3.

Consistent with Gopalan et al. (2018) is the choice of settings for the numerical PDE solver: a 21 by 21

grid (so n = 441) is used with ∆x = ∆y = 105 m and ∆t = .1 years. Note that, consequently, the number

of simulator runs (25) is much smaller than the dimensionality of the output of the solver (441).

4.1 Posterior inference of the ice viscosity parameter with an emulator com-

pared to a numerical PDE solver

In this section, we conduct an empirical study to examine how a first-order spatio-temporal emulator (i.e.,

an emulator based on the method in Appendix B) compares to a numerical solver of the PDE, both in terms

of run-time of computations and posterior inference of ice viscosity. While the precise technical details for

constructing a first-order spatio-temporal emulator are given in Appendix B, the idea is to approximate the

numerical solver output for each time point that there is collected data. To do this, we train an emulator

using the following values for ice viscosity: {10, 12.5, 15.0, ..., 70.0} in units of 10−25s−1Pa−3, a grid of values

that is intentionally coarser than the values used for posterior computation, since in this case the emulator

must be used for parameter values not in the training set. We used the rbenchmark (Kusnierczyk, 2012)

package to benchmark the run-time of the log-likelihood of the model evaluated at the actual parameter

value computed with a numerical solver versus a first-order spatio-temporal emulator, using a MacBook Pro

early 2015 model with a 2.7 GHz Intel Core i5 processor and 8 GB 1867 MHz DDR3 memory. The emulator

version performs 14.5 times faster (.354 seconds for the emulator based log-likelihood versus 5.148 seconds

for the numerical solver based log-likelihood). We also generated samples from the posterior distribution

of ice viscosity with grid sampling (grid [10,70] inclusive with grid width .50 in units of 10−25s−1Pa−3),

using both the numerical PDE version and the emulated version. The summary statistics of 106 posterior

samples for ice viscosity using both the emulator and numerical solver are given in Table 1. Qualitatively,

the summary statistics are similar.

The principle behind choosing the ice viscosity parameter values in the training set is to fill the space of

the support for ice viscosity, but not to choose a grid as fine as the one used for posterior sampling. (Such an

approach would be circular, in that the emulator would just be generating predictions inside of the training

set.) However, such a heuristic will not be feasible as the number of parameters grows beyond one parameter

(the number of design points would need to grow exponentially in the number of dimensions). In such cases,
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we suggest using other space-filling designs: notably, a latin hypercube design has been used extensively in

the computer experiments literature, for instance in Higdon et al. (2008).

Test Case Min 1st Quartile Median Mean 3rd Quartile Max

Emulator SIA solver 15.0 26.5 27.0 27.4 29.0 38.5

Numerical SIA solver 15.0 24.5 26.5 26.3 28.0 37.5

Table 1: Summary statistics of 106 posterior samples of the ice viscosity parameter using an emulator for

the SIA and a numerical solver for the SIA; qualitatively, these posterior samples are similar. Units are in

10−25s−1Pa−3.

4.2 Assessing a random walk for representing model discrepancy

The choice of using a random walk to correct for deviations between the output of a computer simulator and

the actual physical process values has a few important motivations:

1. The inaccuracy of a spatio-temporal computer simulation is most likely going to increase as it is run

further into the future. Conveniently, a random walk’s variance increases with time – for example a

RW(1) has marginal variance jΣ at time j.

2. As shown in Appendix A and Section 3.1, the likelihood involves band-limited matrices, for which there

exist specialized numerical linear algebra routines. However, there is a trade-off in bandwidth and the

order of the random walk utilized.

3. Spatial correlations in the inaccuracies of a computer simulation can be captured with the covariance

matrix Σ.

In addition to these motivations, the purpose of this section is to empirically assess how a random walk

model performs for correcting the output of a numerical SIA PDE solver. To do this, we use the analytical

SIA solution as a gold standard. This is a simplification in the sense that the real glacial dynamics will not

follow the SIA PDE and therefore the analytical SIA solution exactly, but nonetheless this is a way to check

the veracity of the random walk error model in some capacity – at the very least, as a model for numerical

error but not model uncertainty.

Figure 3 displays the differences between the analytical SIA PDE solution for glacial thickness and the

numerical SIA PDE solution for glacial thickness at all of the glacier grid points, run forward for 5000 time

steps (i.e., 500 years). More precisely, the points in blue are at the margin of the glacier, the points in red

are at the interior, and the points filled in black are close to the top (also referred to as the dome) of the
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glacier. Recall from Figure 1 that the glacier looks like a shallow ellipsoid sliced in half (in the x-y plane),

and so the panel on the right of this figure is a top view of the glacier grid points, which looks like a circle

of radius 750 km projected onto the x-y plane. In comparison, the height is 3600 m.

Figure 3: An illustration of the difference between the exact analytical solution and the numerical solution
for the SIA PDE. On the right panel is a top view of the glacier, whose shape looks like a dome, and therefore
the projection on to the x-y plane is a circle. The blue points signify the margin of the glacier (where it drops
down to zero thickness), the red points are at the interior of the glacier, and the black points are towards
the top of the glacier. The points that are not filled in signify the border of the glacier, where there is no ice
thickness. On the left panel the discrepancies between the analytical SIA PDE solution and the numerical
SIA PDE solution for all grid points are shown. Specifically, the color of each path corresponds to the grid
points on the right panel. Additionally, the paths are shown for 500 years, or 5000 time steps.

The differences are all very smooth (i.e., continuous) functions of time, implying that the numerical SIA

PDE solver is producing continuous output as well – we know that the analytical solution is continuous

based on the functional form in Eqs. 3-5. Thus, it appears that a random walk of at least a few orders is

necessary to represent these differences. Moreover, as expected from Bueler et al. (2005), the largest errors

occur at the margin, whereas the interior and dome differences are less extreme.

To assess if a random walk model is appropriate, for each time point j and for orders 1-7, we computed

residuals, in other words, the left hand side of Eq. 8, which should theoretically be distributed like εj (i.e.,

independent MVN(0,Σ) random variables). To compute Xj , we take the difference Sj − f(θ, j), where Sj

is the analytical glacial thickness solution to the SIA PDE at time j (i.e., the real physical process for the

purpose of this analysis), and f(θ, j) is the numerical glacial thickness solution to the SIA PDE at time j.

We examine the residuals for two randomly selected grid points of the glacier (one at the interior and one

at the margin) in Figures 4 and 5.

A few important observations should be emphasized based on the empirical analysis displayed in these

figures. The first is that a single order random walk substantially filters the discrepancy; for the interior grid

point, it is reduced from the order of 10 m to the order of .01 m (1000 times reduction in magnitude), and

for the margin grid point from the order of 100 m to .05 m (more than 1000 times reduction). Additionally,

for both the interior and margin grid points, it appears that RW(5) is optimal in the sense that the residuals
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Figure 4: This figure displays residuals in units of meters (i.e., the term εj in Eq. 8) for RW(q) of orders 1-7
for a randomly selected interior grid point. The first four panels display values on different scaled y-axes to
better show the shapes, whereas the bottom four panels have the same scaling for the y-axis to be able to
compare across the figures. RW(5) and above look like white noise processes, though RW(5) has the smallest
variance.

Figure 5: This figure also displays residuals in units of meters (i.e., the term εj in Eq. 8) for RW(q) of orders
1-7 for a randomly selected margin grid point. Just like the previous figure, the first four panels display
values on different scaled y-axes to better show the shapes, whereas the bottom four panels have the same
scaling for the y-axis to be able to compare across the figures. Just as in the previous figure, RW(5) and
above look like white noise processes, though RW(5) has the smallest variance.

closely resemble a white noise process and have the smallest variance. While the residuals from higher order

RW processes also resemble white noise, the magnitude of the noise is larger. Nonetheless, we believe that

real physical processes will not always be as smooth as the analytical SIA PDE solutions, and hence it is

likely that a lower order RW process will be preferred for real scenarios.
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4.3 Reducing bias for the posterior distribution of θ

In Brynjarsdóttir and O’Hagan (2014), when prior information about the model discrepancy term is intro-

duced in a simple physical system (i.e., a constrained GP over a space of functions), the bias of a posterior

distribution of a physically relevant parameter reduces. We have found that a very similar phenomenon

occurs in the glaciology test case, a result that was pointed out in Gopalan et al. (2018). Specifically, in

Bueler et al. (2005), it is shown that there is large spatial variation in the scale of deviations between the

exact solution to the SIA and a numerical finite difference solver of the SIA. Specifically, there is spatial

variation between the dome, interior, and margin of a glacier, with deviations at the margin being markedly

larger than at the interior and dome. To investigate the effect of such prior information, we choose the

matrix Σ to be such that it is block diagonal with 3 blocks, Σint, Σdome, and Σmargin. Each of these blocks

is derived from a square exponential covariance kernel with the same length-scale parameter φ = 70 km,

but differing variance parameters σ2
int, σ2

dome, and σ
2
margin. If we ignore prior information from Bueler et al.

(2005), we assume that there is an equal prior probability that each of σ2
int, σ2

dome, and σ
2
margin is in the set

{.1, 1, 10, 100} in units of m2. If we use prior information from Bueler et al. (2005), we instead assume equal

prior probability on {.1, 1} for σ2
int, {1, 10} for σ2

dome, and {10, 100} for σ2
margin (again all units are m2).

As shown in Gopalan et al. (2018), the posterior for ice viscosity is less biased in the case that incorporates

prior information for the scale of errors; this phenomenon is explored again in the next section.

While in the above discussion we have not been precise about the term bias, the following ought to

make this notion more rigorous. Let θ0 be the true parameter, and θ̂ be an estimator of θ0. The fre-

quentist definition of bias is usually E[θ̂ − θ0], where the expectation (i.e., average) is taken over the

sampling distribution, p(Y |θ0). The Bayesian notion of bias used informally in the preceding paragraph

(and essentially the same notion as in Brynjarsdóttir and O’Hagan (2014)) is b(Y ,θ0) = E[θ − θ0], where

the expectation (i.e., average) is taken with respect to the posterior distribution of θ, p(θ|Y ). Con-

sider E[b(Y ,θ0)], where the (outer) expectation is taken with respect to the sampling distribution. Then

E[b(Y ,θ0)] = E[E[θ − θ0]] = E[E[θ] − θ0] = E[θ̂ − θ0], which is the frequentist bias. In other words, the

frequentist bias is equivalent to the average of b(Y ,θ0) over the sampling distribution, if the posterior mean

is chosen as an estimator. In the glaciology test case, we have (informally) not noticed much variability in

the posterior for ice viscosity over repeated sampling of the data, and hence the distinction between Bayesian

bias and frequentist bias is not significant.

The reader may wonder why a fixed θ0 was assumed in the preceding paragraph, despite that a Bayesian

model has been presented in this paper. In fact, it is typical to assume that the actual value of a parameter

is fixed, despite ascribing a probability distribution to it in the form of a prior or posterior. Conceptually,
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such a probability distribution is a representation of a modeler’s uncertainty regarding the fixed, unknown

value of the parameter. For more on this interpretation of Bayesian statistics, the reader can consult results

of statistical decision theory (e.g., on admissibility) in Lehmann and Casella (2003) and Robert (2007). This

viewpoint is also taken in Bayesian asymptotic analysis, such as the Bernstein-von Mises theorem (van der

Vaart, 2000; Shen and Wasserman, 2001).

4.4 Inferring Σ

The covariance matrix Σ, first introduced after Equation 7 in Section 3, determines the spatial correlation

inherent in the error-correcting process, X. Since spatial correlation in the error-correcting process is

important to model (which is particularly evident in the glaciology example of Bueler et al. (2005)), we

need to discuss how Σ ought to be specified. Choosing Σ can be difficult if no or little prior information is

available, and in such a case, we suggest:

Σ = diag(v)R diag(v),

where log(v) ∼ MVN(µv,Σv), Σv is derived from a GP kernel such as squared-exponential or Matérn kernel,

and R is a correlation matrix also derived from a GP kernel. To avoid non-identifiability and complexity

of inference, it is suggested to pre-specify the parameters of these GP kernels. This approach is similar to

the modeling strategy employed in Geirsson et al. (2015). The intuition behind this approach is that the

term v encodes spatial variability in the scale of deviations between the output of a computer simulator and

the true physical process, and spatial correlation in these deviations is strongly enforced with non-diagonal

terms in both Σv and R.

Figure 6 illustrates a map of the mean posterior field for the variances of the error-correcting process,

where the area of each circle is proportional to the inferred posterior mean of variance; due to a multivariate

normal prior on log(v), elliptical slice sampling is used as the method for posterior sampling (Murray et al.,

2010). Consistent with Bueler et al. (2005), the variances tend to increase at the margins and are smaller at

the interior. Additionally, the scaled differences between the analytical solution and numerical solver at the

final time point the simulator is run (where scaling is inverse of the posterior mean of standard deviation)

should theoretically approach a mean zero normal distribution according to the model. The p-value for an

Anderson-Darling test is .436, suggesting that the scaled differences between the analytical solution and

numerical solver are consistent with a normal distribution. Moreover, the sample mean for these scaled

differences is .079 and the sample standard deviation is .409.
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Figure 6: Inferred posterior variance field of the error-correcting process, where the area of each circle is
proportional to the variance at the grid point centered at the circle. Qualitatively, this field behaves as
one would expect from the the work of Bueler et al. (2005), where the authors demonstrate that numerical
inaccuracies for the SIA PDE are greatest toward the margin, but much smaller at the interior of the glacier.

As is discussed in the previous subsection, prior information for Σ has an effect on the inference of

physical parameters (i.e., ice viscosity), and in particular, a lack of prior information can lead to a very

biased posterior distribution for physical parameters. To compare the fitted Σ using a GP field against the Σ

matrices discussed in the previous section, we show in Table 2 a comparison of posterior inference for the ice

viscosity parameter for three choices of Σ. The first choice of Σ is the posterior mean of samples assuming

the structure Σ = diag(v)Rdiag(v), with log(v) ∼ MVN(µv,Σv). In the second and third scenarios, Σ

is block diagonal with three variance parameters for each of the three blocks. A weakly informative case

assumes that σ2
int = σ2

dome = σ2
margin = .1, whereas a more informative case (using prior information from

Bueler et al. (2005)) has σ2
int = σ2

dome = .1 and σ2
margin = 10 (all units are m2). The scenario for weak prior

information for Σ results in a very biased posterior distribution whose support does not cover the actual

parameter value (31.7× 10−25 in units of s−1Pa−3) – the maximum in this case is 26.5× 10−25 in units of

s−1Pa−3. While the (absolute) biases of the posterior for ice viscosity for the GP field version compared to

the prior information from Bueler et al. (2005) are comparable (5.09 versus 4.01 in units of 10−25s−1Pa−3),

the posterior variance is markedly larger in the former case. This result suggests that prior knowledge from

a domain expert is likely to be useful in determining Σ, though in a case when that does not exist, the

methodology described in this section is an adequate alternative.
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Test Case Min 1st Quartile Median Mean 3rd Quartile Max

Σ with GP field 10.0 21.0 36.0 35.7 50.5 70.0

Σ with strong prior information 18.0 25.0 26.5 26.6 28.0 35.5

Σ with weak prior information 12.5 18.5 19.5 19.5 20.5 26.5

Table 2: Summary statistics of 106 posterior samples of the ice viscosity parameter under three versions of Σ.

While the weakly-informative case leads to a very biased posterior, the biases for the ice viscosity posterior

in the first two Σ matrices are comparable. Nonetheless, the posterior variance is much less in the case with

prior information from Bueler et al. (2005).

4.5 Exact versus approximate likelihood

In Section 3.1, we showed an exact way to calculate the model likelihood as well as an approximation in

Section 3.2. In this subsection, our purpose is to compare these two methods of likelihood computation in

terms of run-time and posterior inference. Using a MacBook Pro early 2015 model with a 2.7 GHz Intel

Core i5 processor and 8 GB 1867 MHz DDR3 memory (as before), one component of the log-likelihood

approximation (which can be computed in an embarrassingly parallel fashion with the other components

of the sum) takes .0179 s, whereas the full log-likelihood calculation, as in Section 3.1, is .354 seconds (in

both cases, using a first-order emulator). The results of comparing posterior samples for the ice viscosity

parameter are given in Table 3 – thus, while the mean, median, first, and third quartiles are comparable,

the approximate version has larger posterior uncertainty than the exact version as is evidenced by the

wider tails. These results suggest that, while there is likely a computational speed-up afforded by using the

approximation (i.e., at least an order of magnitude), the price to pay is increased posterior uncertainty.

Test Case Min 1st Quartile Median Mean 3rd Quartile Max

Exact likelihood 15.0 26.5 27.0 27.4 29.0 39.5

Likelihood approximation 10.0 26.0 28.0 27.7 31.0 52.5

Table 3: Summary statistics of 106 posterior samples of the ice viscosity parameter using an exact likelihood

and a likelihood approximation (units are in 10−25s−1Pa−3). While the 1st quartile, median, mean, and 3rd

quartile are similar, the tails in the approximation are much wider.
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5 Generality of the model and methodology

Though we have tested the model and methodology in the previous sections in the context of a glaciology

example, it should be noted that they can be used in other physical systems with similar components. In

essence, this modeling and methodology can be applied in scenarios where:

1. A computer program (i.e., computer simulator) is available to simulate a continuous physical process

through space and time, but there is a deviation between the output of the computer simulator and

the actual physical process.

2. The deviations between the computer simulator output and the actual physical process values tend to

grow with time and exhibit spatial correlation structure.

3. Measurements of the physical process are available, but they are potentially scarce both in space and

time.

4. Physical parameters governing the physical process are uncertain but can be constrained with domain

knowledge for the random walk error covariance (i.e., Σ).

Recall that at the process level, the model stipulates that:

Sj = f(θ,φ, j) +Xj . (17)

To apply the same setup to another physical scenario, a different version of f(., ., .), such as a numerical PDE

solver for another system of spatio-temporal PDEs besides the SIA, can be used. However, while f(., ., .) will

need to be tailored to another physical scenario based on a different numerical scheme or physical model,

the Xj term would be modeled in the same way (i.e., with a random walk).

6 Conclusion

The objective of this work has been to set forth a versatile physical-statistical model in the Bayesian hierar-

chical framework that incorporates a computer simulator for a physical process, such as a numerical solver

for a system of PDEs. Posterior inference for physical parameters (and, consequently, posterior predictions

of the physical process) can be computationally demanding within this model, since each evaluation of the

likelihood requires a full PDE solve and computing the inverse and determinant of a large covariance matrix.

Therefore, we have set forth two main ways to speed up computation: first is the use of bandwidth limited
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linear algebra in a manner similar to Rue (2001) for quickly handling the covariance matrix in the likeli-

hood, and the second is the use of spatio-temporal emulation in a manner similar to Hooten et al. (2011)

to emulate a PDE solver that is expensive to evaluate. An additional method for speeding up computation

is to approximate the likelihood in a way that leads to embarrassingly parallel computation. The utility of

this model and corresponding inference methodology is demonstrated with a test example from glaciology.

A unique feature of this work is how we represent the discrepancy between a computer simulator for a

physical process and the real physical process values. One approach, as in Kennedy and O’Hagan (2001)

and Brynjarsdóttir and O’Hagan (2014), is to assume that this is a fixed yet unknown function that can be

learned with a GP (or constrained GP) prior distribution over a space of functions. Instead, we assume that

this discrepancy is a spatio-temporal stochastic process (i.e., a random walk), which is motivated by the fact

that a computer simulation is likely to become less accurate as it is run forward in time, as well as exhibit

some degree of spatial correlation in inaccuracies. An interesting consequence of this modeling decision is

that linear algebraic routines for band-limited matrices can be utilized for evaluating the likelihood of the

model in an efficient manner. Another interesting artifact of this approach is that when prior information is

used for the random walk’s error term (i.e., in Σ), the bias for the posterior distribution of θ is reduced. The

same phenomenon is exhibited in the work of Brynjarsdóttir and O’Hagan (2014), where a constrained GP

prior over a space of functions ends up reducing the bias of the physical parameter posterior distribution.

Despite that the model and methodology appear to perform well in the analysis of this paper, it is

important to comment on some potential drawbacks of the approach, particularly when applied to other

physical contexts. In this paper, emulation works adequately with a single parameter, though emulators

do not always work well in other applications or higher dimensional parameter spaces. For example, Salter

et al. (2019) document some shortcomings of a principal components based emulator in climate modeling.

The second main computational advantages stem from log-likelihood evaluation speed-ups. The use of

bandwidth limited matrix algebra for the exact log-likelihood can be used so long as the model holds, which

may not always be the case (e.g., with a non-Gaussian data distribution). Additionally, the log-likelihood

approximation holds when the measurement errors are small relative to the signal modeled, which depends

on the measurement instruments used to collect the data. For instance, on common geophysical scales of

thousands of meters, light detection and ranging (LIDAR) or digital-GPS data have maximum errors on the

order of a meter.

Additionally, if it is not possible to program the computer simulator to produce output at the data

measurement locations, there are essentially two main ways to handle such a scenario. The first is to use

spatial kriging to predict the value of the computer simulator at the spatial locations where data are collected,

given the output of the computer simulator at the grid points. A simpler approach is to use inverse-distance
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weighting of the simulator output at the nearest neighbors; that is, take a weighted average of the four

nearest grid points of the simulator, where the weights are proportional to the inverse of distance. Such an

approach, for example, has been used in Geirsson et al. (2015).

Future research will include predicting Langjökull glacier surface elevation using the modeling and

methodology within this paper, based on actual data collected by the UI-IES.

A Derivation of the exact likelihood and computational simplifica-

tions

As was shown in Appendix B of Gopalan et al. (2018), the covariance matrix for the observed data can be

written as U⊗V + σ2I, where Uab = kmin(a, b) with U ∈ RN×N , and V = A(Σ)Aᵀ. It can be verified that

U−1 is tridiagonal, so it has bandwidth one – more specifically:

U−1 = k−1



2 −1 0 . . .

−1 2 −1 0 . . .

0 −1 2 −1 0 . . .

0 0
. . . . . . . . .

0 ... −1 2 −1

0 ... −1 1


. (18)

One useful property of the Kronecker product is that (U⊗V)−1 = U−1 ⊗V−1. Therefore:

(U⊗V)−1 = U−1 ⊗V−1 (19)

= k−1



2V−1 −V−1 0 . . .

−V−1 2V−1 −V−1 0 . . .

0 −V−1 2V −1 −V−1 0 . . .

0 0
. . . . . . . . .

0 ... −V−1 2V−1 −V−1

0 ... V−1 V−1


, (20)

whose bandwidth is O(m).

Let us denote U ⊗ V as W. By the matrix inversion lemma, it follows that (σ2I + W)−1 = σ−2I −

σ−2(W−1 +σ−2I)−1Iσ−2. The matrix W−1 +σ−2I has bandwidth O(m) since W−1 has bandwidth O(m) as
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shown previously, so this expression can be computed in O(Nm3) (Rue, 2001; Golub and Van Loan, 2012).

Similarly, by the matrix determinant lemma, log[det(σ2I + W)] is log[det(I + σ2W−1)det(W−1)−1] =

log[det(I + σ2W−1)]-log[det(W−1)]. Since both terms are log-determinants of square matrices of dimension

Nm and bandwidth O(m), this can be calculated in O(Nm3) due to the efficient Cholesky factorization of

band-limited matrices (Rue, 2001; Golub and Van Loan, 2012).

B First-order spatio-temporal emulators

In the examples of this paper, the function f(., ., .) (i.e., the computer simulator) can take one of two forms:

a numerical PDE solver for the SIA, or an emulator constructed from the numerical PDE solver for the SIA.

The numerical method for solving the SIA PDE is as given in Gopalan et al. (2018), and the emulator is

constructed based on the finite difference solver in a manner as suggested in Hooten et al. (2011), termed

first-order emulation.

That is, we start with a set of plausible values for ice viscosity: {θ1, θ2, ..., θp} and, for each time point

there is collected data ck, we store a matrix Mck, where the q-th column of matrix Mck is the output of the

numerical solver using parameter value θq after running for ck time steps forward. Thus, each matrix Mck

is of dimension n by p, and without essential loss of generality we can assume that the number n is much

larger than p, and each matrix Mck is of rank p.

For each matrix, Mck, we compute a singular value decomposition (SVD), UckDckVᵀ
ck. The goal is to

find a (vector valued) function vck(θ∗) such that the emulated output at time ck for parameter value θ∗ is

UckDckvck(θ∗). To find the q-th element of vck, we train a random forest (Breiman, 2001; Liaw and Wiener,

2002) with (θ1, (V
ᵀ
ck)q1), (θ2, (V

ᵀ
ck)q2), ..., (θp, (V

ᵀ
ck)qp) as training data, where (V ᵀ

ck)q1 is the first element of

the q-th right singular vector, (V ᵀ
ck)q2 is the second element of the q-th right singular vector, and so on. Not

all of the right singular vectors need be used in emulation, and a heuristic such as an elbow-scree plot or the

randomization procedure of Friedman et al. (2001) can be used to determine the number of right singular

vectors to keep. However, if the number of simulator runs (p) is much smaller than the dimensionality of

the output (n), all of the right singular vectors can be utilized with computational savings, as is done in the

experiments of this paper.

We have assumed the initial conditions and boundary conditions are known, since this is the case in the

glaciology problems we have studied, where the boundary condition is that glacial thickness is nonnegative,

and the initial glacier profile (i.e., a dome) is known. In general, however, φ may be incorporated into the

analysis above by considering θ and φ jointly. Additionally, a variant is to directly emulate the likelihood

function. However, since there is flexibility in the choice of Σ (which enters into the likelihood), unless one
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is set on using a particular value of Σ, it is sensible to emulate the numerical solver as opposed to retraining

a likelihood emulator for each potential choice of Σ.
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