13,815 research outputs found
Hydrogen-Bonded Liquids: Effects of Correlations of Orientational Degrees of Freedom
We improve a lattice model of water introduced by Sastry, Debenedetti,
Sciortino, and Stanley to give insight on experimental thermodynamic anomalies
in supercooled phase, taking into account the correlations between
intra-molecular orientational degrees of freedom. The original Sastry et al.
model including energetic, entropic and volumic effect of the
orientation-dependent hydrogen bonds (HBs), captures qualitatively the
experimental water behavior, but it ignores the geometrical correlation between
HBs. Our mean-field calculation shows that adding these correlations gives a
more water-like phase diagram than previously shown, with the appearance of a
solid phase and first-order liquid-solid and gas-solid phase transitions.
Further investigation is necessary to be able to use this model to characterize
the thermodynamic properties of the supercooled region.Comment: 7 pages latex, 3 figures EP
Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose
In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of lysozyme with/without trehalose, we observe that the dynamics of water in the hydration layers close to the protein is dramatically slower when trehalose is present in the system. We also analyze the structure of water and trehalose around the lysozyme and find that the trehalose molecules form a cage surrounding the protein that contains very slow water molecules. We conclude that the transient cage of trehalose molecules that entraps and slows the water molecules prevents the crystallisation of protein hydration water upon cooling.DC, EGS, and HES thank the NSF chemistry Division for support (Grants CHE-1213217, CHE-0911389, and CHE-0908218). PG gratefully acknowledges the computational support reveived by the INFN RM3-GRID at Roma Tre University. (CHE-1213217 - NSF chemistry Division; CHE-0911389 - NSF chemistry Division; CHE-0908218 - NSF chemistry Division)Published versio
Epidemic Model with Isolation in Multilayer Networks
The Susceptible-Infected-Recovered (SIR) model has successfully mimicked the
propagation of such airborne diseases as influenza A (H1N1). Although the SIR
model has recently been studied in a multilayer networks configuration, in
almost all the research the isolation of infected individuals is disregarded.
Hence we focus our study in an epidemic model in a two-layer network, and we
use an isolation parameter to measure the effect of isolating infected
individuals from both layers during an isolation period. We call this process
the Susceptible-Infected-Isolated-Recovered () model. The isolation
reduces the transmission of the disease because the time in which infection can
spread is reduced. In this scenario we find that the epidemic threshold
increases with the isolation period and the isolation parameter. When the
isolation period is maximum there is a threshold for the isolation parameter
above which the disease never becomes an epidemic. We also find that epidemic
models, like overestimate the theoretical risk of infection. Finally, our
model may provide a foundation for future research to study the temporal
evolution of the disease calibrating our model with real data.Comment: 18 pages, 5 figures.Accepted in Scientific Report
50-nm self-aligned and 'standard' T-gate InP pHEMT comparison: the influence of parasitics on performance at the 50-nm node
Continued research into the development of III-V high-electron mobility transistors (HEMTs), specifically the minimization of the device gate length, has yielded the fastest performance reported for any three terminal devices to date. In addition, more recent research has begun to focus on reducing the parasitic device elements such as access resistance and gate fringing capacitance, which become crucial for short gate length device performance maximization. Adopting a self-aligned T-gate architecture is one method used to reduce parasitic device access resistance, but at the cost of increasing parasitic gate fringing capacitances. As the device gate length is then reduced, the benefits of the self-aligned gate process come into question, as at these ultrashort-gate dimensions, the magnitude of the static fringing capacitances will have a greater impact on performance. To better understand the influence of these issues on the dc and RF performance of short gate length InP pHEMTs, the authors present a comparison between In0.7Ga0.3As channel 50-nm self-aligned and "standard" T-gate devices. Figures of merit for these devices include transconductance greater than 1.9 S/mm, drive current in the range 1.4 A/mm, and fT up to 490 GHz. Simulation of the parasitic capacitances associated with the self-aligned gate structure then leads a discussion concerning the realistic benefits of incorporating the self-aligned gate process into a sub-50-nm HEMT syste
- âŠ