715 research outputs found

    Optical properties of small polarons from dynamical mean-field theory

    Full text link
    The optical properties of polarons are studied in the framework of the Holstein model by applying the dynamical mean-field theory. This approach allows to enlighten important quantitative and qualitative deviations from the limiting treatments of small polaron theory, that should be considered when interpreting experimental data. In the antiadiabatic regime, accounting on the same footing for a finite phonon frequency and a finite electron bandwidth allows to address the evolution of the optical absorption away from the well-understood molecular limit. It is shown that the width of the multiphonon peaks in the optical spectra depends on the temperature and on the frequency in a way that contradicts the commonly accepted results, most notably in the strong coupling case. In the adiabatic regime, on the other hand, the present method allows to identify a wide range of parameters of experimental interest, where the electron bandwidth is comparable or larger than the broadening of the Franck-Condon line, leading to a strong modification of both the position and the shape of the polaronic absorption. An analytical expression is derived in the limit of vanishing broadening, which improves over the existing formulas and whose validity extends to any finite-dimensional lattice. In the same adiabatic regime, at intermediate values of the interaction strength, the optical absorption exhibits a characteristic reentrant behavior, with the emergence of sharp features upon increasing the temperature -- polaron interband transitions -- which are peculiar of the polaron crossover, and for which analytical expressions are provided.Comment: 16 pages, 6 figure

    Functional integral treatment of some quantum nondemolition systems

    Full text link
    In the scheme of a quantum nondemolition (QND) measurement, an observable is measured without perturbing its evolution. In the context of studies of decoherence in quantum computing, we examine the `open' quantum system of a two-level atom, or equivalently, a spin-1/2 system, in interaction with quantum reservoirs of either oscillators or spins, under the QND condition of the Hamiltonian of the system commuting with the system-reservoir interaction. For completeness, we also examine the well-known non-QND spin-Bose problem. For all these many-body systems, we use the methods of functional integration to work out the propagators. The propagators for the QND Hamiltonians are shown to be analogous to the squeezing and rotation operators, respectively, for the two kinds of baths considered. Squeezing and rotation being both phase space area-preserving canonical transformations, this brings out an interesting connection between the energy-preserving QND Hamiltonians and the homogeneous linear canonical transformations.Comment: 16 pages, no figure

    Time evolution of the Rabi Hamiltonian from the unexcited vacuum

    Full text link
    The Rabi Hamiltonian describes a single mode of electromagnetic radiation interacting with a two-level atom. Using the coupled cluster method, we investigate the time evolution of this system from an initially empty field mode and an unexcited atom. We give results for the atomic inversion and field occupation, and find that the virtual processes cause the field to be squeezed. No anti-bunching occurs.Comment: 25 pages, 8 figures, RevTe

    Photoinduced IR absorption in (La(1-x)Sr(x)Mn)(1-\delta)O3: changes of the anti-Jahn-Teller polaron binding energy with doping

    Full text link
    Photoinduced IR absorption was measured in (La(1-x)Sr(x)Mn)(1-\delta)O3. A midinfrared peak centered at ~ 5000 cm1^{-1} was observed in the x=0 antiferromagnetic sample. The peak diminishes and softens as hole doping is increased. The origin of the photoinduced absorption peak is atributted to the photon assisted hopping of anti-Jahn-Teller polarons formed by photoexcited charge carriers, whose binding energy decreases with increasing hole doping. The shape of the peak indicates that the polarons are small.Comment: 5 pages, 3 figures, submitted to PR

    Recurrence-based time series analysis by means of complex network methods

    Full text link
    Complex networks are an important paradigm of modern complex systems sciences which allows quantitatively assessing the structural properties of systems composed of different interacting entities. During the last years, intensive efforts have been spent on applying network-based concepts also for the analysis of dynamically relevant higher-order statistical properties of time series. Notably, many corresponding approaches are closely related with the concept of recurrence in phase space. In this paper, we review recent methodological advances in time series analysis based on complex networks, with a special emphasis on methods founded on recurrence plots. The potentials and limitations of the individual methods are discussed and illustrated for paradigmatic examples of dynamical systems as well as for real-world time series. Complex network measures are shown to provide information about structural features of dynamical systems that are complementary to those characterized by other methods of time series analysis and, hence, substantially enrich the knowledge gathered from other existing (linear as well as nonlinear) approaches.Comment: To be published in International Journal of Bifurcation and Chaos (2011

    Many-body large polaron optical conductivity in SrTi1x_{1-x}Nbx_xO3_3

    Full text link
    Recent experimental data on the optical conductivity of niobium doped SrTiO3_{3} are interpreted in terms of a gas of large polarons with effective coupling constant αeff2\alpha_{eff}\approx2. The {theoretical approach takes into account} many-body effects, the electron-phonon interaction with multiple LO-phonon branches, and the degeneracy and the anisotropy of the Ti t2g_{2g} conduction band. {Based on the Fr\"{o}hlich interaction, the many-body large-polaron theory} provides an interpretation for the essential characteristics, except -- interestingly -- for the unexpectedly large intensity of a peak at 130\sim130 meV, of the observed optical conductivity spectra of SrTi1x_{1-x}Nbx_{x}O3_{3} \textit{without} any adjustment of material parameters.Comment: to appear in Phys. Rev.

    Geometric and dynamic perspectives on phase-coherent and noncoherent chaos

    Get PDF
    Statistically distinguishing between phase-coherent and noncoherent chaotic dynamics from time series is a contemporary problem in nonlinear sciences. In this work, we propose different measures based on recurrence properties of recorded trajectories, which characterize the underlying systems from both geometric and dynamic viewpoints. The potentials of the individual measures for discriminating phase-coherent and noncoherent chaotic oscillations are discussed. A detailed numerical analysis is performed for the chaotic R\"ossler system, which displays both types of chaos as one control parameter is varied, and the Mackey-Glass system as an example of a time-delay system with noncoherent chaos. Our results demonstrate that especially geometric measures from recurrence network analysis are well suited for tracing transitions between spiral- and screw-type chaos, a common route from phase-coherent to noncoherent chaos also found in other nonlinear oscillators. A detailed explanation of the observed behavior in terms of attractor geometry is given.Comment: 12 pages, 13 figure

    Polaronic excitations in CMR manganite films

    Get PDF
    In the colossal magnetoresistance manganites polarons have been proposed as the charge carrier state which localizes across the metal-insulator transition. The character of the polarons is still under debate. We present an assessment of measurements which identify polarons in the metallic state of La{2/3}Sr{1/3}MnO{3} (LSMO) and La{2/3}Ca{1/3}MnO{3} (LCMO) thin films. We focus on optical spectroscopy in these films which displays a pronounced resonance in the mid-infrared. The temperature dependent resonance has been previously assigned to polaron excitations. These polaronic resonances are qualitatively distinct in LSMO and LCMO and we discuss large and small polaron scenarios which have been proposed so far. There is evidence for a large polaron excitation in LSMO and small polarons in LCMO. These scenarios are examined with respect to further experimental probes, specifically charge carrier mobility (Hall-effect measurements) and high-temperature dc-resistivity.Comment: 16 pages, 10 figure

    Polaronic optical absorption in electron-doped and hole-doped cuprates

    Full text link
    Polaronic features similar to those previously observed in the photoinduced spectra of cuprates have been detected in the reflectivity spectra of chemically doped parent compounds of high-critical-temperature superconductors, both nn-type and pp-type. In Nd2_2CuO4y_{4-y} these features, whose intensities depend both on doping and temperature, include local vibrational modes in the far infrared and a broad band centered at \sim 1000 cm1^{-1}. The latter band is produced by the overtones of two (or three) local modes and is well described in terms of a small-polaron model, with a binding energy of about 500 cm1^{-1}. Most of the above infrared features are shown to survive in the metallic phase of Nd2x_{2-x}Cex_xCu04y_{4-y}, Bi2_2Sr2_2CuO6_6, and YBa2_2Cu3_3O7y_{7-y}, where they appear as extra-Drude peaks. The occurrence of polarons is attributed to local modes strongly coupled to carriers, as shown by a comparison with tunneling results.Comment: File latex, 31 p., submitted to Physical Review B. Figures may be faxed upon reques

    Electron Dynamics in Films Made of Transition Metal Nanograins Embedded in SiO2:Infrared Reflectivity and Nanoplasma Infrared Resonance

    Get PDF
    We report on near normal infrared reflectivity spectra of ~550 nm thick films made of cosputtered transition metal nanograins and SiO2 in a wide range of metal fractions. Co0.85(SiO2)0.15,with conductivity well above the percolation threshold has a frequency and temperature behavior according to what it is find in conducting metal oxides. The electron scattering rate displays an unique relaxation time characteristic of single type of carriers experiencing strong electron-phonon interactions. Using small polaron fits we identify those phonons as glass vibrational modes. Ni0.61(SiO2)0.39, with a metal fraction closer to the percolation threshold, undergoes a metal-non metal transition at ~77 K. Here, as it is suggested by the scattering rate nearly quadratic dependence, we broadly identify two relaxation times (two carrier contributions) associated to a Drude mode and a mid-infrared overdamped band, respectively. Disorder induced, the mid-infrared contribution drives the phase transition by thermal electron localization. Co0.51(SiO2)0.49 has the reflectivity of an insulator with a distinctive band at ~1450cm\^{-1} originating in electron promotion, localization, and defect induced polaron formation. Angle dependent oblique reflectivity of globally insulating Co0.38(SiO2)0.62, Fe0.34(SiO2)0.66, and Ni0.28(SiO2)0.72, reveals a remarkable resonance at that band threshold. We understand this as due to the excitation by normal to the film electric fields of defect localized electrons in the metallic nanoparticle
    corecore