1,384 research outputs found

    Dynamics and structure of the Alpine Fold Belt

    Get PDF
    The structure and present-day dynamics of the Alps interms of geodesy and gravimetry are discusssed. A strong correlation of precise leveling and isostatic gravity along the central Alpine chain, especially in Canton Graubunden, East Switzerland are shown. It is assumed that the uplift is partly controlled by isostatic rebound effects. Field observations indicate that these phenomena are still active in the Alps. The study of the uplift processes by applying a number of geodetic and gravimetric measuring techniques, such as the determination of nonperiodic secular variations of gravity, of the deflections of the vertical and tilt changes monitored by hydrostatic leveling is proposed

    CGPS time-series and trajectories of crustal motion along the West Hellenic Arc

    Get PDF
    Western Greece is one of the seismotectonically most active regions in Europe. The main tectonic structures are the West Hellenic Arc (WHA) and the Kephalonia Fault Zone. In order to monitor and understand the crustal movements in space and time, a continuous GPS network was installed. In this paper we present results of 6 yr (1995-2001) of measurements. To ensure a consistent reference frame, 54 mainly European IGS and EUREF sites were included in the processing. A selected subset was used to estimate an Euler pole for the rotation of Eurasia. In order to obtain coordinate time-series of high precision that are representative for crustal deformation, special emphasis was given to the elimination of non-tectonic effects. Four steps of improvement were pursued, including a reprocessing after exclusion of poor data, the removal of remaining outliers, the correction of unknown phase centre offsets after antenna changes and weighted common-mode filtering. With this procedure, non-tectonic irregularities were reduced significantly, and the precision was improved by an average of 40 per cent. The final time-series are used as a base for depicting trajectories of crustal motion, interpreting the temporal behaviour of the sites and for estimating velocities. For the first time, height changes in the WHA area were detected and quantified by GPS. Sites that are located near the epicentres of the 1997 Strofades (Mw = 6.6) and the 1999 Athens (Mw = 6.0) earthquakes are particularly considere

    Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks

    Get PDF
    Tropospheric water vapour is the main limiting factor in using GPS to determine crustal deformation at highest accuracy. On the other hand, it is an important variable to monitor meteorological and climatic processes. This paper discusses both aspects: the modelling of tropospheric water vapour using meteorological data as well as the determination of the integrated amount of water vapour and its spatiotemporal variation using GPS data. Switzerland has been chosen as experiment area. The Swiss continuous GPS (CGPS) network AGNES is used as a reference network, which represents a realistic scenario for GPS-based water vapour determination. Data of the Swiss numerical weather model aLMo are used for systematic comparison and validation. For the first aspect, integrated tropospheric wet refractivity values are determined from meteorological measurements and compared with GPS path delays. An overall agreement of 1 cm of zenith wet path delay was achieved. For the second aspect a tomographic approach has been developed. A total of 6720 GPS-determined profiles are compared with data of the numerical weather model and radio soundings. The results are statistically evaluated and systematically compared with each other. A correlation between the accuracy and the weather situation was found. Overall, an agreement of 5-7 ppm (refractivity unit) was obtained compared to aLMo. The use of GPS-determined path delays from a permanent GPS network is the recommended method to correct GPS measurements. In all other cases, the two methods presented (COITROPA, COMEDIE) are a feasible alternative to determine path delays accurately. Furthermore, GPS is a convenient application to determine the amount of water vapour in the troposphere. It is demonstrated that the vertical distribution of water vapour can be deduced by applying the tomographic approac

    Determination of the spatial and temporal variation of tropospheric water vapour using CGPS networks

    Get PDF
    Tropospheric water vapour is the main limiting factor in using GPS to determine crustal deformation at highest accuracy. On the other hand, it is an important variable to monitor meteorological and climatic processes. This paper discusses both aspects: the modelling of tropospheric water vapour using meteorological data as well as the determination of the integrated amount of water vapour and its spatiotemporal variation using GPS data. Switzerland has been chosen as experiment area. The Swiss continuous GPS (CGPS) network AGNES is used as a reference network, which represents a realistic scenario for GPS-based water vapour determination. Data of the Swiss numerical weather model aLMo are used for systematic comparison and validation. For the first aspect, integrated tropospheric wet refractivity values are determined from meteorological measurements and compared with GPS path delays. An overall agreement of 1 cm of zenith wet path delay was achieved. For the second aspect a tomographic approach has been developed. A total of 6720 GPS-determined profiles are compared with data of the numerical weather model and radio soundings. The results are statistically evaluated and systematically compared with each other. A correlation between the accuracy and the weather situation was found. Overall, an agreement of 5-7 ppm (refractivity unit) was obtained compared to aLMo. The use of GPS-determined path delays from a permanent GPS network is the recommended method to correct GPS measurements. In all other cases, the two methods presented (COITROPA, COMEDIE) are a feasible alternative to determine path delays accurately. Furthermore, GPS is a convenient application to determine the amount of water vapour in the troposphere. It is demonstrated that the vertical distribution of water vapour can be deduced by applying the tomographic approac

    A modified least-squares collocation method for the determination of crustal deformation: first results in the Swiss Alps

    Get PDF
    The calculation of recent crustal movements and the associated crustal deformation rely on a suitable interpolation of geodetic measurements with repetition cycles of years or decades and modern GPS permanent networks. A common interpolation methods is the least-square collocation (LSC). LSC requires some a priori assumptions about the characteristics of the velocity field, that is, stocasticity in Moritz's definition of LSC. We present a novel approach, called adaptative LSC (ALSC) to the interpolation of non-stochastic fields, which encompass the traditional LSC and the block model as special cases. This modified collocation method is based on the empirical estimation of a anisotropic and inhomogeneous covariance function of the interpolated field. The method has been tested on synthetic data that simulate geodetic measurements over a triple plate junction and with real data from precise levelling measurements over the Swiss Alps. In both cases, ALSC gave better and more stable results, compared to LSC and other interpolation methods, such as smoothed spline

    Mirror formation control in the vicinity of an asteroid

    Get PDF
    Two strategies are presented for the positioning and control of a spacecraft formation designed to focus sunlight onto a point on the surface of asteroid, thereby sublimating the material and ejecting debris creating thrust. In the first approach, the formation is located at artficial equilibrium points around the asteroid and controlled using the force from the solar radiation pressure. The second approach determines the optimal periodic formation orbits, subject to the gravitational perturbations from the asteroid, the solar radiation pressure and the control acceleration derived from a control law

    Random geometric complexes

    Full text link
    We study the expected topological properties of Cech and Vietoris-Rips complexes built on i.i.d. random points in R^d. We find higher dimensional analogues of known results for connectivity and component counts for random geometric graphs. However, higher homology H_k is not monotone when k > 0. In particular for every k > 0 we exhibit two thresholds, one where homology passes from vanishing to nonvanishing, and another where it passes back to vanishing. We give asymptotic formulas for the expectation of the Betti numbers in the sparser regimes, and bounds in the denser regimes. The main technical contribution of the article is in the application of discrete Morse theory in geometric probability.Comment: 26 pages, 3 figures, final revisions, to appear in Discrete & Computational Geometr

    Minimal model for beta relaxation in viscous liquids

    Get PDF
    Contrasts between beta relaxation in equilibrium viscous liquids and glasses are rationalized in terms of a double-well potential model with structure-dependent asymmetry, assuming structure is described by a single order parameter. The model is tested for tripropylene glycol where it accounts for the hysteresis of the dielectric beta loss peak frequency and magnitude during cooling and reheating through the glass transition.Comment: Phys. Rev. Lett. (in press
    corecore