2,521 research outputs found

    Many-Body Dynamics and Exciton Formation Studied by Time-Resolved Photoluminescence

    Full text link
    The dynamics of exciton and electron-hole plasma populations is studied via time-resolved photoluminescence after nonresonant excitation. By comparing the peak emission at the exciton resonance with the emission of the continuum, it is possible to experimentally identify regimes where the emission originates predominantly from exciton and/or plasma populations. The results are supported by a microscopic theory which allows one to extract the fraction of bright excitons as a function of time.Comment: 11 pages, 5 figure

    Photoluminescence and Terahertz Emission from Femtosecond Laser-Induced Plasma Channels

    Full text link
    Luminescence as a mechanism for terahertz emission from femtosecond laser-induced plasmas is studied. By using a fully microscopic theory, Coulomb scattering between electrons and ions is shown to lead to luminescence even for a spatially homogeneous plasma. The spectral features introduced by the rod geometry of laser-induced plasma channels in air are discussed on the basis of a generalized mode-function analysis.Comment: 4 pages with 2 figures

    Excitonic Photoluminescence in Semiconductor Quantum Wells: Plasma versus Excitons

    Full text link
    Time-resolved photoluminescence spectra after nonresonant excitation show a distinct 1s resonance, independent of the existence of bound excitons. A microscopic analysis identifies excitonic and electron-hole plasma contributions. For low temperatures and low densities the excitonic emission is extremely sensitive to even minute optically active exciton populations making it possible to extract a phase diagram for incoherent excitonic populations.Comment: 9 pages, 4 figure

    The Precise Formula in a Sine Function Form of the norm of the Amplitude and the Necessary and Sufficient Phase Condition for Any Quantum Algorithm with Arbitrary Phase Rotations

    Full text link
    In this paper we derived the precise formula in a sine function form of the norm of the amplitude in the desired state, and by means of he precise formula we presented the necessary and sufficient phase condition for any quantum algorithm with arbitrary phase rotations. We also showed that the phase condition: identical rotation angles, is a sufficient but not a necessary phase condition.Comment: 16 pages. Modified some English sentences and some proofs. Removed a table. Corrected the formula for kol on page 10. No figure

    Treating treatment-resistant patients with panic disorder and agoraphobia: A randomized controlled switching trial

    Get PDF
    Background: Nonresponsiveness to therapy is generally acknowledged, but only a few studies have tested switching to psychotherapy. This study is one of the first to examine the malleability of treatment-resistant patients using acceptance and commitment therapy (ACT). Methods: This was a randomized controlled trial that included 43 patients diagnosed with primary panic disorder and/or agoraphobia (PD/A) with prior unsuccessful state-of-the-art treatment (mean number of previous sessions = 42.2). Patients were treated with an ACT manual administered by novice therapists and followed up for 6 months. They were randomized to immediate treatment (n = 33) or a 4-week waiting list (n = 10) with delayed treatment (n = 8). Treatment consisted of eight sessions, implemented twice weekly over 4 weeks. Primary outcomes were measured with the Panic and Agoraphobia Scale (PAS), the Clinical Global Impression (CGI), and the Mobility Inventory (MI). Results: At post-treatment, patients who received ACT reported significantly more improvements on the PAS and CGI (d = 0.72 and 0.89, respectively) than those who were on the waiting list, while improvement on the MI (d = 0.50) was nearly significant. Secondary outcomes were consistent with ACT theory. Follow-up assessments indicated a stable and continued improvement after treatment. The dropout rate was low (9%). Conclusions: Despite a clinically challenging sample and brief treatment administered by novice therapists, patients who received ACT reported significantly greater changes in functioning and symptomatology than those on the waiting list, with medium-to-large effect sizes that were maintained for at least 6 months. These proof-of-principle data suggest that ACT is a viable treatment option for treatment-resistant PD/A patients. Further work on switching to psychotherapy for nonresponders is clearly needed. © 2015 S. Karger AG, Basel

    The colour dipole approach to small-x processes

    Get PDF
    We explain why it is possible to formulate a wide variety of high energy (small-x) photon-proton processes in terms of a universal dipole cross section and compare and contrast various parameterizations of this function that exist in the literature.Comment: 6 pages, latex, 2 figures. Contribution to Durham Collider Workshop (Sept 99) proceeding

    AdS/QCD and Light Front Holography: A New Approximation to QCD

    Get PDF
    The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-front wave equations in terms of an invariant impact variable zeta which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti--de Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability distributions of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra are presented. The predicted meson spectrum has a string-theory Regge form M2=4κ2(n+L+S/2){\cal M}^2 = 4 \kappa^2(n+L+S/2); i.e., the square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in the radial variable zeta. The space-like pion and nucleon form factors are also well reproduced. One thus obtains a remarkable connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD in physical space-time quantized on the light-front at fixed light-front time. The model can be systematically improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.Comment: Invited talk, presented by SJB at the Fifth International Conference On Quarks and Nuclear Physics (QNP09), 21-26 Sep 2009, Beijing, China. Figure update

    Kepler423b: a half-Jupiter mass planet transiting a very old solar-like star

    Get PDF
    We report the spectroscopic confirmation of the Kepler object of interest KOI-183.01 (Kepler-423b), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned (PDC) light curve of KOI-183 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of about 4.3 % and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star KOI-183 is a G4 dwarf with M=0.85±0.04M_\star=0.85\pm0.04 M_\rm{Sun}, R=0.95±0.04R_\star=0.95\pm0.04 R_\rm{Sun}, Teff=5560±80T_\mathrm{eff}=5560\pm80 K, [M/H]=0.10±0.05[M/H]=-0.10\pm0.05 dex, and with an age of 11±211\pm2 Gyr. The planet KOI-183b has a mass of Mp=0.595±0.081M_\mathrm{p}=0.595\pm0.081 MJup_\mathrm{Jup} and a radius of Rp=1.192±0.052R_\mathrm{p}=1.192\pm0.052 RJup_\mathrm{Jup}, yielding a planetary bulk density of ρp=0.459±0.083\rho_\mathrm{p}=0.459\pm0.083 g/cm3^{3}. The radius of KOI-183b is consistent with both theoretical models for irradiated coreless giant planets and expectations based on empirical laws. The inclination of the stellar spin axis suggests that the system is aligned along the line of sight. We detected a tentative secondary eclipse of the planet at a 2-σ\sigma confidence level (ΔFec=14.2±6.6\Delta F_{\mathrm{ec}}=14.2\pm6.6 ppm) and found that the orbit might have a small non-zero eccentricity of e=0.0190.014+0.028e=0.019^{+0.028}_{-0.014}. With a Bond albedo of AB=0.037±0.019A_\mathrm{B}=0.037\pm0.019, KOI-183b is one of the gas-giant planets with the lowest albedo known so far.Comment: 13 pages, 13 figures, 5 tables. Accepted for publication in A&A. Planet designation changed from KOI-183b to Kepler-423
    corecore