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Abstract The combination of Anti-de Sitter space (AdS) methods with light-front holography leads to a

semi-classical first approximation to the spectrum and wavefunctions of meson and baryon light-quark bound

states. Starting from the bound-state Hamiltonian equation of motion in QCD, we derive relativistic light-

front wave equations in terms of an invariant impact variable ζ which measures the separation of the quark

and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical

space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti–de

Sitter (AdS) space. Its eigenvalues give the hadronic spectrum, and its eigenmodes represent the probability

distribution of the hadronic constituents at a given scale. Applications to the light meson and baryon spectra

are presented. The predicted meson spectrum has a string-theory Regge formM2 = 4κ2(n+L+S/2); i.e., the

square of the eigenmass is linear in both L and n, where n counts the number of nodes of the wavefunction in

the radial variable ζ. The space-like pion form factor is also well reproduced. One thus obtains a remarkable

connection between the description of hadronic modes in AdS space and the Hamiltonian formulation of QCD

in physical space-time quantized on the light-front at fixed light-front time τ. The model can be systematically

improved by using its complete orthonormal solutions to diagonalize the full QCD light-front Hamiltonian or

by applying the Lippmann-Schwinger method in order to systematically include the QCD interaction terms.
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1 Introduction

A long-sought goal in hadron physics is to find
a simple analytic first approximation to QCD analo-
gous to the Schrödinger-Coulomb equation of atomic
physics. This problem is particularly challeng-
ing since the formalism must be relativistic, color-
confining, and consistent with chiral symmetry. We
have recently shown that the combination of Anti-de
Sitter space (AdS) methods with light-front holog-
raphy lead to a remarkably accurate first approxima-
tion for the spectrum and wavefunctions of meson and
baryon light-quark bound states. The resulting equa-
tion for a meson qq̄ bound state at fixed light-front
time τ = t+z/c , the time marked by the front of a
light wave, [1] has the form of a relativistic Lorentz

invariant Schrödinger equation(
− d2

dζ2
− 1−4L2

4ζ2
+U(ζ)

)
φ(ζ) =M2φ(ζ), (1)

where the confining potential is U(ζ) =κ4ζ2+2κ2(L+
S−1) in a soft dilaton modified background. There
is only one parameter, the mass scale κ ∼ 1/2 GeV,
which enters the confinement potential. Here S= 0,1
is the spin of the q and q̄, L is their relative orbital
angular momentum and ζ =

√
x(1−x)b2⊥ is a Lorentz

invariant coordinate that measures the distance be-
tween the quark and antiquark; it is analogous to
the radial coordinate r in the Schrodinger equation.
In effect ζ represents the off-light-front energy shell
or invariant mass dependence of the bound state; it
allows the separation of the dynamics of quark and
gluon binding from the kinematics of constituent spin
and internal orbital angular momentum. [2] We thus
obtain a single-variable LF relativistic Schrödinger
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equation which determines the spectrum and LFWFs
of hadrons for general spin and orbital angular mo-
mentum. This LF wave equation serves as a semi-
classical first approximation to QCD, and it is equiv-
alent to the equations of motion which describe the
propagation of spin-J modes in AdS space. One thus
obtains a remarkable connection between the descrip-
tion of hadronic modes in AdS space and the Hamilto-
nian formulation of QCD in physical space-time quan-
tized on the light-front (LF) at fixed light-front time
τ.

The meson spectrum predicted by Eq. 1 has a
string-theory Regge formM2 = 4κ2(n+L+S/2); i.e.,
the square of the eigenmasses are linear in both L and
n, where n counts the number of nodes of the wave-
function in the radial variable ζ. This is illustrated
for the pseudoscalar and vector meson spectra in Figs.
1 and 2, where the data are from Ref. [6]. The pion
(S = 0,n= 0,L= 0) is massless for zero quark mass,
consistent with chiral invariance. Thus one can com-
pute the hadron spectrum by simply adding 4κ2 for
a unit change in the radial quantum number, 4κ2 for
a change in one unit in the orbital quantum number
and 2κ2 for a change of one unit of spin S. Remark-
ably, the same rule holds for three-quark baryons as
we shall show below.
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Fig. 1. Parent and daughter Regge trajectories

for the π-meson family for κ= 0.6 GeV.
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Fig. 2. Regge trajectories for the I=1 ρ-meson

and the I = 0 ω-meson families for κ = 0.54

GeV.

The eigensolutions of Eq. 1 provide the light-front
wavefunctions of the valence Fock state of the hadrons
ψ(ζ) = ψ(x,b⊥) as illustrated for the pion in Fig. 3
for the soft and hard wall models. Given these wave-
functions one can predict many hadronic observables
such as the generalized parton distributions that en-
ter deeply virtual Compton scattering. For example,
hadron form factors can be predicted from the over-
lap of LFWFs as in the Drell-Yan West formula. The
prediction for the space-like pion form factor is shown
in Fig. 4. The pion form factor and the vector me-
son poles residing in the dressed current in the soft
wall model require choosing a value of κ smaller by
a factor of 1/

√
2 than the canonical value of κ which

determines the mass scale of the hadronic spectra.
This shift is apparently due to the fact that the trans-
verse current in e+e−→ qq̄ creates a quark pair with
Lz =±1 instead of the Lz = 0 qq̄ composition of the
vector mesons in the spectrum. Given the LFWFs
one can compute jet hadronization at the amplitude
level from first principles. [26].
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Fig. 3. Pion light-front wavefunction ψπ(x,b⊥)

for the AdS/QCD (a) hard-wall (ΛQCD = 0.32

GeV) and (b) soft-wall ( κ= 0.375 GeV) mod-

els.

This semi-classical first approximation to QCD
can be systematically improved by using the com-
plete orthonormal solutions of Eq. 1 to diagonalize
the QCD light-front Hamiltonian [28] or by applying
the Lippmann-Schwinger method to systematically
include the QCD interaction terms, together with a
variational principle. In either case, the result is the
full Fock state structure of the hadron eigensolution.
One can also model heavy-light and heavy hadrons
by including non-zero quark masses in the LF kinetic
energy

∑
i
(k2
⊥i +m2

i )/xi as well as the effects of the
one-gluon exchange potential.
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Fig. 4. Space-like scaling behavior for Fπ(Q2)

as a function of q2. The continuous line

is the prediction of the soft-wall model for

κ= 0.375 GeV. The dashed line is the predic-

tion of the hard-wall model for ΛQCD = 0.22

GeV. The triangles are the data compilation

from Baldini et al.,
[21]

the filled boxes are

JLAB 1 data
[22]

and empty boxes are JLAB

2 data.
[23]

One can derive these results in two parallel ways.
In the first method, one begins with a conformal ap-
proximation to QCD, justified by evidence that the
QCD β function vanishes in the infrared. [29] One then
uses the fact that the conformal group has a geo-
metrical representation in the five-dimensional AdS5

space to model an effective dual gravity description in
AdS. The fact that conformal invariance is reflected
in the isometries of AdS is an essential ingredient
of Maldacena’s AdS/CFT correspondence. Confine-
ment can be effectively introduced with a sharp cut-
off in the infrared region of AdS space, the “hard-
wall” model, [30] or, more successfully, using a dilaton

background in the fifth dimension which produces a
smooth cutoff and linear Regge trajectories, the “soft-
wall” model. [31] The soft-wall AdS/CFT model with
a dilaton-modified AdS space leads to the potential
U(z) =κ4z2 +2κ2(L+S−1), [33? ] We assume a dila-
ton profile exp(+κ2z2), with opposite sign to that of
Ref. [31]. Glazek and Schaden [34] have shown that
a harmonic oscillator confining potential naturally
arises as an effective potential between heavy quark
states when one stochastically eliminates higher glu-
onic Fock states. Also, Hoyer [35] has argued that the
Coulomb and a linear potentials are uniquely allowed
in the Dirac equation at the classical level. The linear
potential becomes a harmonic oscillator potential in
the corresponding Klein-Gordon equation.

Hadrons in AdS/QCD are identified by matching
the power behavior of the hadronic amplitude at the
AdS boundary at small z to the twist of its interpo-
lating operator at short distances x2→ 0, as required
by the AdS/CFT dictionary. The twist corresponds
to the dimension of fields appearing in chiral super-
multiplets. [36] The twist of a hadron equals the num-
ber of constituents plus the relative orbital angular
momentum. We then apply light-front holography
to relate the amplitude eigensolutions in the fifth di-
mension coordinate z to the LF wavefunctions in the
physical spacetime variable ζ. Light-front holography
can be derived by using the identity between the
Polchinski-Strassler formula for current matrix ele-
ments and the corresponding Drell-Yan-West formula
in LF theory. The same correspondence is obtained
for both electromagnetic and gravitational form fac-
tors, a nontrivial test of consistency.

Light-Front Holography can be derived by observ-
ing the correspondence between matrix elements ob-
tained in AdS/CFT with the corresponding formula
using the LF representation. [41] Identical results are
obtained from the mapping of the QCD gravitational
form factor with the expression for the hadronic grav-
itational form factor in AdS space. [43, 64]

The term −(1−4L2)/4ζ2 in the LF equation of
motion (1) is derived from the reduction of the LF ki-
netic energy when one transforms to the radial ζ and
angular coordinate ϕ, in analogy to the `(`+ 1)/r2

Casimir term in Schrödinger theory. One thus estab-
lishes the interpretation of L in the AdS equations of
motion. The interaction terms build confinement and
correspond to truncation of AdS space [2] in an effec-
tive dual gravity approximation. The duality between
these two methods provides a direct connection be-
tween the description of hadronic modes in AdS space
and the Hamiltonian formulation of QCD in physical
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space-time quantized on the light-front at fixed LF
time τ.

The identification of orbital angular momentum
of the constituents is a key element in the descrip-
tion of the internal structure of hadrons using holo-
graphic principles. In our approach quark and gluon
degrees of freedom are explicitly introduced in the
gauge/gravity correspondence, in contrast with the
usual AdS/QCD framework [37, 38] where axial and
vector currents become the primary entities as in ef-
fective chiral theory.

In the standard applications of AdS/CFT meth-
ods, one begins with Maldacena’s duality between the
conformal supersymmetric SO(4,2) gauge theory and
a semiclassical supergravity string theory defined in
a 10 dimension AdS5 × S5 space-time. In contrast,
in our bottom-up approach, we use the mathemati-
cal fact that the effects of scale transformations in a
conformal theory can be mapped to the z dependence
of amplitudes in AdS5 space. QCD has an infrared
fixed point and a conformal window in the infrared
domain since the propagators of the confined quarks
and gluons in the loop integrals contributing to the β
function have a maximal wavelength, [45] as in QED
where vacuum polarization corrections to the photon
propagator decouple at Q2→ 0. One then uses AdS5

to represent scale transformations within the confor-
mal window. Unlike the top-down approach, one is
not limited to hadrons of maximum spin J ≤ 2, and
one can study baryons with NC = 3.

Higher spin modes follow from shifting dimensions
in the AdS wave equations. In the soft-wall model the
usual Regge behavior is foundM2∼n+L, predicting
the same multiplicity of states for mesons and baryons
as observed experimentally. [76] It is possible to extend
the model to hadrons with heavy quark constituents
by introducing nonzero quark masses and short-range
Coulomb corrections.

The AdS/QCD semiclassical approximation to
light-front QCD does not account for particle creation
and absorption, and thus it will break down at short
distances where hard gluon exchange and quantum
corrections become important. However, the model
can be systematically improved by using its complete
orthonormal solutions to diagonalize the QCD light-
front Hamiltonian [28] or by applying the Lippmann-
Schwinger method to systematically include the QCD
interaction terms.

2 The Light-Front Hamiltonian Ap-

proach to QCD

The LFWFs of bound states in QCD are rela-
tivistic generalizations of the Schrödinger wavefunc-
tions of atomic physics, but they are determined at
fixed light-cone time τ = t+ z/c – the “front form”
introduced by Dirac [1] – rather than at fixed or-
dinary time t. It is natural to set boundary condi-
tions at fixed τ and then evolve the system using
the light-front (LF) Hamiltonian P− = P 0 − P 3 =
id/dτ . The invariant Hamiltonian HLF =P+P−−P 2

⊥

then has eigenvalues M2 where M is the phys-
ical mass. Its eigenfunctions are the light-front
eigenstates whose Fock state projections define the
light-front wavefunctions. Given the LF Fock state
wavefunctions ψHn (xi,k⊥i,λi), where xi = k+/P+,∑n

i=1
xi = 1,

∑n

i=1
k⊥i = 0, one can immediately

compute observables such as hadronic form factors
(overlaps of LFWFs), structure functions (squares of
LFWFS), as well as the generalized parton distribu-
tions and distribution amplitudes which underly hard
exclusive reactions.

The most useful feature of LFWFs is the fact
that they are frame independent; i.e., the form of
the LFWF is independent of the hadron’s total mo-
mentum P+ = P 0 + P 3 and P⊥. The simplicity of
Lorentz boosts of LFWFs contrasts dramatically with
the complexity of the boost of wavefunctions defined
at fixed time t. [46] Light-front quantization is thus the
ideal framework to describe the structure of hadrons
in terms of their quark and gluon degrees of free-
dom. The constituent spin and orbital angular mo-
mentum properties of the hadrons are also encoded
in the LFWFs. The total angular momentum pro-
jection [47], Jz =

∑n

i=1
Szi +

∑n−1

i=1
Lzi , is conserved

Fock-state by Fock-state and by every interaction in
the LF Hamiltonian. Other advantageous features
of light-front quantization include: (1) The simple
structure of the light-front vacuum allows an unam-
biguous definition of the partonic content of a hadron
in QCD. The chiral and gluonic condensates are prop-
erties of the higher Fock states, [48, 49] rather than
the vacuum. In the case of the Higgs model, the ef-
fect of the usual Higgs vacuum expectation value is
replaced by a constant k+ = 0 zero mode field. [50]

(2) If one quantizes QCD in the physical light-cone
gauge (LCG) A+ = 0, then gluons only have phys-
ical angular momentum projections Sz = ±1. The
orbital angular momenta of quarks and gluons are
defined unambiguously, and there are no ghosts. (3)
The gauge-invariant distribution amplitude φ(x,Q) is
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the integral of the valence LFWF in LCG integrated
over the internal transverse momentum k2

⊥ <Q2 be-
cause the Wilson line is trivial in this gauge. It is also
possible to quantize QCD in Feynman gauge in the
light front. [51] (4) Amplitudes in light-front pertur-
bation theory are automatically renormalized using
the “alternate denominator” subtraction method. [53]

The application to QED has been checked at one and
two loops. [53] (5) One can easily show using LF quan-
tization that the anomalous gravitomagnetic moment
B(0) of a nucleon, as defined from the spin flip matrix
element of the gravitational current, vanishes Fock-
state by Fock state [47], as required by the equiva-
lence principle. [54] (6) LFWFs obey the cluster de-
composition theorem, providing an elegant proof of
this theorem for relativistic bound states. [55] (7) The
LF Hamiltonian can be diagonalized using the dis-
cretized light-cone quantization (DLCQ) method. [56]

This nonperturbative method is particularly useful
for solving low-dimension quantum field theories such
as QCD(1+1). [57] (8) LF quantization provides a dis-
tinction between static (the square of LFWFs) distri-
butions versus non-universal dynamic structure func-
tions, such as the Sivers single-spin correlation and
diffractive deep inelastic scattering which involve fi-
nal state interactions. The origin of nuclear shadow-
ing and process independent anti-shadowing also be-
comes explicit. (9) LF quantization provides a simple
method to implement jet hadronization at the ampli-
tude level. (10) The instantaneous fermion interac-
tion in LF quantization provides a simple derivation
of the J = 0 fixed pole contribution to deeply virtual
Compton scattering, [58] i.e., the e2qs

0F (t) contribu-
tion to the DVCS amplitude which is independent of
photon energy and virtuality.

3 Baryons in AdS.QCD

For baryons, the light-front wave equation is a lin-
ear equation determined by the LF transformation
properties of spin 1/2 states. A linear confining po-
tential U(ζ) ∼ κ2ζ in the LF Dirac equation leads
to linear Regge trajectories. [60] For fermionic modes
the light-front matrix Hamiltonian eigenvalue equa-
tion DLF |ψ〉 =M|ψ〉, HLF = D2

LF , in a 2×2 spinor
component representation is equivalent to the system
of coupled linear equations

− d

dζ
ψ−−

ν+ 1
2

ζ
ψ−−κ2ζψ− = Mψ+,

d

dζ
ψ+−

ν+ 1
2

ζ
ψ+−κ2ζψ+ = Mψ−. (2)

with eigenfunctions

ψ+(ζ) ∼ z
1
2+νe−κ

2ζ2/2Lνn(κ2ζ2),

ψ−(ζ) ∼ z
3
2+νe−κ

2ζ2/2Lν+1
n (κ2ζ2), (3)

and eigenvalues

M2 = 4κ2(n+ν+1). (4)

The baryon interpolating operator O3+L =
ψD{`1 . . .D`qψD`q+1 . . .D`m}ψ, L =

∑m

i=1
`i is a twist

3, dimension 9/2 +L with scaling behavior given by
its twist-dimension 3+L. We thus require ν = L+1
to match the short distance scaling behavior. Higher
spin fermionic modes are obtained by shifting dimen-
sions for the fields as in the bosonic case. Thus, as
in the meson sector, the increase in the mass squared
for higher baryonic state is ∆n= 4κ2, ∆L= 4κ2 and
∆S = 2κ2, relative to the lowest ground state, the
proton.

The predictions for the 56-plet of light baryons
under the SU(6) flavor group are shown in Fig. 5.
As for the predictions for mesons in Fig. 2, only
confirmed PDG [6] states are shown. The Roper
state N(1440) and the N(1710) are well accounted
for in this model as the first and second radial states.
Likewise the ∆(1660) corresponds to the first radial
state of the ∆ family. The model is successful in
explaining the important parity degeneracy observed
in the light baryon spectrum, such as the L = 2,
N(1680)−N(1720) degenerate pair and the L = 2,
∆(1905),∆(1910),∆(1920),∆(1950) states which are
degenerate within error bars. Parity degeneracy of
baryons is also a property of the hard wall model, but
radial states are not well described in this model. [40]
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Fig. 5. 56 Regge trajectories for the N and ∆

baryon families for κ= 0.5 GeV

4 Vacuum Effects and Light-Front

Quantization

The LF vacuum is remarkably simple in light-cone
quantization because of the restriction k+ ≥ 0. For
example in QED, vacuum graphs such as e+e−γ as-
sociated with the zero-point energy do not arise. In
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the Higgs theory, the usual Higgs vacuum expecta-
tion value is replaced with a k+ = 0 zero mode [50];
however, the resulting phenomenology is identical to
the standard analysis.

Hadronic condensates play an important role in
quantum chromodynamics (QCD). Conventionally,
these condensates are considered to be properties of
the QCD vacuum and hence to be constant through-
out spacetime. A new perspective on the nature of
QCD condensates 〈q̄q〉 and 〈GµνG

µν〉, particularly
where they have spatial and temporal support, has re-
cently been presented. [45, 49, 65, 66] Their spatial sup-
port is restricted to the interior of hadrons, since these
condensates arise due to the interactions of quarks
and gluons which are confined within hadrons. For
example, consider a meson consisting of a light quark
q bound to a heavy antiquark, such as a B meson.
One can analyze the propagation of the light q in
the background field of the heavy b̄ quark. Solving
the Dyson-Schwinger equation for the light quark one
obtains a nonzero dynamical mass and, via the con-
nection mentioned above, hence a nonzero value of
the condensate 〈q̄q〉. But this is not a true vacuum
expectation value; instead, it is the matrix element
of the operator q̄q in the background field of the b̄

quark. The change in the (dynamical) mass of the
light quark in this bound state is somewhat reminis-
cent of the energy shift of an electron in the Lamb
shift, in that both are consequences of the fermion
being in a bound state rather than propagating freely.
Similarly, it is important to use the equations of mo-
tion for confined quarks and gluon fields when ana-
lyzing current correlators in QCD, not free propaga-
tors, as has often been done in traditional analyses
of operator products. Since the distance between the
quark and antiquark cannot become arbitrarily large,
one cannot create a quark condensate which has uni-
form extent throughout the universe. The 45 orders of
magnitude conflict of QCD with the observed value
of the cosmological condensate is thus removed. [66]

A new perspective on the nature of quark and gluon
condensates in quantum chromodynamics is thus ob-
tained: [45, 65, 66] the spatial support of QCD conden-
sates is restricted to the interior of hadrons, since
they arise due to the interactions of confined quarks
and gluons. In LF theory, the condensate physics is
replaced by the dynamics of higher non-valence Fock
states as shown by Casher and Susskind. [48] In par-
ticular, chiral symmetry is broken in a limited domain
of size 1/mπ, in analogy to the limited physical extent
of superconductor phases. This novel description of
chiral symmetry breaking in terms of “in-hadron con-

densates” has also been observed in Bethe-Salpeter
studies. [67, 68] This picture also explains the results
of recent studies [69–71] which find no significant signal
for the vacuum gluon condensate.

AdS/QCD also provides a description of chiral
symmetry breaking by using the propagation of a
scalar field X(z) to represent the dynamical running
quark mass. The AdS solution has the form [37, 38]

X(z) = a1z+ a2z
3, where a1 is proportional to the

current-quark mass. The coefficient a2 scales as Λ3
QCD

and is the analog of 〈q̄q〉; however, since the quark is
a color nonsinglet, the propagation of X(z), and thus
the domain of the quark condensate, is limited to the
region of color confinement. Furthermore the effect
of the a2 term varies within the hadron, as character-
istic of an in-hadron condensate. A similar solution is
found in the soft wall model in presence of a positive
sign dilaton. [33]

5 Conclusions

We have derived a connection between a semi-
classical first approximation to QCD, quantized on
the light-front, and hadronic modes propagating on
a fixed AdS background. This leads to an effective
relativistic Schrödinger-like equation in the AdS fifth
dimension coordinate z (1). We have show how this
AdS wave equation can be derived in physical space
time as an effective equation for valence quarks in LF
quantized theory, where one identifies the AdS fifth
dimension coordinate z with the LF coordinate ζ. We
originally derived this correspondence using the iden-
tity between electromagnetic and gravitational form
factors computed in AdS and LF theory [41–43]. Our
derivation shows that the fifth-dimensional mass µ
in the AdS equation of motion is directly related to
orbital angular momentum L in physical space-time.
The result is physically compelling and phenomeno-
logically successful. The Schrödinger-like light-front
AdS/QCD equation provides successful predictions
for the light-quark meson and baryon spectra, as
function of hadron spin, quark angular momentum,
and radial quantum number. [75] and it can be sys-
tematicallly improved. The pion is massless for zero
mass quarks in agreement with chiral invariance ar-
guments. The predictions for form factors are also
successful. The predicted power law fall-off agrees
with dimensional counting rules as required by con-
formal invariance at small z. [42, 60]

Presented by SJB at the 10th Workshop on Non-
Perturbative QCD at the Institut d’Astophysique de
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