7,837 research outputs found

    Nonlinear response theory for Markov processes: Simple models for glassy relaxation

    Full text link
    The theory of nonlinear response for Markov processes obeying a master equation is formulated in terms of time-dependent perturbation theory for the Green's functions and general expressions for the response functions up to third order in the external field are given. The nonlinear response is calculated for a model of dipole reorientations in an asymmetric double well potential, a standard model in the field of dielectric spectroscopy. The static nonlinear response is finite with the exception of a certain temperature T0T_0 determined by the value of the asymmetry. In a narrow temperature range around T0T_0, the modulus of the frequency-dependent cubic response shows a peak at a frequency on the order of the relaxation rate and it vanishes for both, low frequencies and high frequencies. At temperatures at which the static response is finite (lower and higher than T0T_0), the modulus is found to decay monotonously from the static limit to zero at high frequencies. In addition, results of calculations for a trap model with a Gaussian density of states are presented. In this case, the cubic response depends on the specific dynamical variable considered and also on the way the external field is coupled to the kinetics of the model. In particular, a set of different dynamical variables is considered that gives rise to identical shapes of the linear susceptibility and only to different temperature dependencies of the relaxation times. It is found that the frequency dependence of the nonlinear response functions, however, strongly depends on the particular choice of the variables. The results are discussed in the context of recent theoretical and experimental findings regarding the nonlinear response of supercooled liquids and glasses.Comment: 23 pages, 10 figure

    On the iterated Crank-Nicolson for hyperbolic and parabolic equations in numerical relativity

    Full text link
    The iterated Crank-Nicolson is a predictor-corrector algorithm commonly used in numerical relativity for the solution of both hyperbolic and parabolic partial differential equations. We here extend the recent work on the stability of this scheme for hyperbolic equations by investigating the properties when the average between the predicted and corrected values is made with unequal weights and when the scheme is applied to a parabolic equation. We also propose a variant of the scheme in which the coefficients in the averages are swapped between two corrections leading to systematically larger amplification factors and to a smaller numerical dispersion.Comment: 7 pages, 3 figure

    A Fast and Compact Quantum Random Number Generator

    Get PDF
    We present the realization of a physical quantum random number generator based on the process of splitting a beam of photons on a beam splitter, a quantum mechanical source of true randomness. By utilizing either a beam splitter or a polarizing beam splitter, single photon detectors and high speed electronics the presented devices are capable of generating a binary random signal with an autocorrelation time of 11.8 ns and a continuous stream of random numbers at a rate of 1 Mbit/s. The randomness of the generated signals and numbers is shown by running a series of tests upon data samples. The devices described in this paper are built into compact housings and are simple to operate.Comment: 23 pages, 6 Figs. To appear in Rev. Sci. Inst

    Record statistics and persistence for a random walk with a drift

    Full text link
    We study the statistics of records of a one-dimensional random walk of n steps, starting from the origin, and in presence of a constant bias c. At each time-step the walker makes a random jump of length \eta drawn from a continuous distribution f(\eta) which is symmetric around a constant drift c. We focus in particular on the case were f(\eta) is a symmetric stable law with a L\'evy index 0 < \mu \leq 2. The record statistics depends crucially on the persistence probability which, as we show here, exhibits different behaviors depending on the sign of c and the value of the parameter \mu. Hence, in the limit of a large number of steps n, the record statistics is sensitive to these parameters (c and \mu) of the jump distribution. We compute the asymptotic mean record number after n steps as well as its full distribution P(R,n). We also compute the statistics of the ages of the longest and the shortest lasting record. Our exact computations show the existence of five distinct regions in the (c, 0 < \mu \leq 2) strip where these quantities display qualitatively different behaviors. We also present numerical simulation results that verify our analytical predictions.Comment: 51 pages, 22 figures. Published version (typos have been corrected

    Spectral statistics for unitary transfer matrices of binary graphs

    Full text link
    Quantum graphs have recently been introduced as model systems to study the spectral statistics of linear wave problems with chaotic classical limits. It is proposed here to generalise this approach by considering arbitrary, directed graphs with unitary transfer matrices. An exponentially increasing contribution to the form factor is identified when performing a diagonal summation over periodic orbit degeneracy classes. A special class of graphs, so-called binary graphs, is studied in more detail. For these, the conditions for periodic orbit pairs to be correlated (including correlations due to the unitarity of the transfer matrix) can be given explicitly. Using combinatorial techniques it is possible to perform the summation over correlated periodic orbit pair contributions to the form factor for some low--dimensional cases. Gradual convergence towards random matrix results is observed when increasing the number of vertices of the binary graphs.Comment: 18 pages, 8 figure

    Performance of the EUDET-type beam telescopes

    Full text link
    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its standard deviation at the two centre pixel planes using all six planes for tracking in a 6\,GeV electron/positron-beam is measured to be (2.88\,\pm\,0.08)\,\upmu\meter.Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean intrinsic resolution over the six sensors used is found to be (3.24\,\pm\,0.09)\,\upmu\meter.With a 5\,GeV electron/positron beam, the track resolution halfway between the two inner pixel planes using an equidistant plane spacing of 20\,mm is estimated to (1.83\,\pm\,0.03)\,\upmu\meter assuming the measured intrinsic resolution. Towards lower beam energies the track resolution deteriorates due to increasing multiple scattering. Threshold studies show an optimal working point of the MIMOSA26 sensors at a sensor threshold of between five and six times their RMS noise. Measurements at different plane spacings are used to calibrate the amount of multiple scattering in the material traversed and allow for corrections to the predicted angular scattering for electron beams

    Experimental Quantum Cryptography with Qutrits

    Full text link
    We produce two identical keys using, for the first time, entangled trinary quantum systems (qutrits) for quantum key distribution. The advantage of qutrits over the normally used binary quantum systems is an increased coding density and a higher security margin. The qutrits are encoded into the orbital angular momentum of photons, namely Laguerre-Gaussian modes with azimuthal index l +1, 0 and -1, respectively. The orbital angular momentum is controlled with phase holograms. In an Ekert-type protocol the violation of a three-dimensional Bell inequality verifies the security of the generated keys. A key is obtained with a qutrit error rate of approximately 10 %.Comment: New version includes additional references and a few minor changes to the manuscrip

    The modular S-matrix as order parameter for topological phase transitions

    Get PDF
    We study topological phase transitions in discrete gauge theories in two spatial dimensions induced by the formation of a Bose condensate. We analyse a general class of euclidean lattice actions for these theories which contain one coupling constant for each conjugacy class of the gauge group. To probe the phase structure we use a complete set of open and closed anyonic string operators. The open strings allow one to determine the particle content of the condensate, whereas the closed strings enable us to determine the matrix elements of the modular SS-matrix, also in the broken phase. From the measured broken SS-matrix we may read off the sectors that split or get identified in the broken phase, as well as the sectors that are confined. In this sense the modular SS-matrix can be employed as a matrix valued non-local order parameter from which the low-energy effective theories that occur in different regions of parameter space can be fully determined. To verify our predictions we studied a non-abelian anyon model based on the quaternion group H=D2ˉH=\bar{D_2} of order eight by Monte Carlo simulation. We probe part of the phase diagram for the pure gauge theory and find a variety of phases with magnetic condensates leading to various forms of (partial) confinement in complete agreement with the algebraic breaking analysis. Also the order of various transitions is established.Comment: 37 page

    Record statistics for biased random walks, with an application to financial data

    Full text link
    We consider the occurrence of record-breaking events in random walks with asymmetric jump distributions. The statistics of records in symmetric random walks was previously analyzed by Majumdar and Ziff and is well understood. Unlike the case of symmetric jump distributions, in the asymmetric case the statistics of records depends on the choice of the jump distribution. We compute the record rate Pn(c)P_n(c), defined as the probability for the nnth value to be larger than all previous values, for a Gaussian jump distribution with standard deviation σ\sigma that is shifted by a constant drift cc. For small drift, in the sense of c/σ≪n−1/2c/\sigma \ll n^{-1/2}, the correction to Pn(c)P_n(c) grows proportional to arctan(n)(\sqrt{n}) and saturates at the value c2σ\frac{c}{\sqrt{2} \sigma}. For large nn the record rate approaches a constant, which is approximately given by 1−(σ/2πc)exp(−c2/2σ2)1-(\sigma/\sqrt{2\pi}c)\textrm{exp}(-c^2/2\sigma^2) for c/σ≫1c/\sigma \gg 1. These asymptotic results carry over to other continuous jump distributions with finite variance. As an application, we compare our analytical results to the record statistics of 366 daily stock prices from the Standard & Poors 500 index. The biased random walk accounts quantitatively for the increase in the number of upper records due to the overall trend in the stock prices, and after detrending the number of upper records is in good agreement with the symmetric random walk. However the number of lower records in the detrended data is significantly reduced by a mechanism that remains to be identified.Comment: 16 pages, 7 figure
    • …
    corecore