We study the statistics of records of a one-dimensional random walk of n
steps, starting from the origin, and in presence of a constant bias c. At each
time-step the walker makes a random jump of length \eta drawn from a continuous
distribution f(\eta) which is symmetric around a constant drift c. We focus in
particular on the case were f(\eta) is a symmetric stable law with a L\'evy
index 0 < \mu \leq 2. The record statistics depends crucially on the
persistence probability which, as we show here, exhibits different behaviors
depending on the sign of c and the value of the parameter \mu. Hence, in the
limit of a large number of steps n, the record statistics is sensitive to these
parameters (c and \mu) of the jump distribution. We compute the asymptotic mean
record number after n steps as well as its full distribution P(R,n). We
also compute the statistics of the ages of the longest and the shortest lasting
record. Our exact computations show the existence of five distinct regions in
the (c, 0 < \mu \leq 2) strip where these quantities display qualitatively
different behaviors. We also present numerical simulation results that verify
our analytical predictions.Comment: 51 pages, 22 figures. Published version (typos have been corrected