
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

The modular S-matrix as order parameter for topological phase transitions

Bais, F.A.; Romers, J.C.
DOI
10.1088/1367-2630/14/3/035024
Publication date
2012
Document Version
Final published version
Published in
New Journal of Physics

Link to publication

Citation for published version (APA):
Bais, F. A., & Romers, J. C. (2012). The modular S-matrix as order parameter for topological
phase transitions. New Journal of Physics, 14, [035024]. https://doi.org/10.1088/1367-
2630/14/3/035024

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:25 Jul 2022

https://doi.org/10.1088/1367-2630/14/3/035024
https://dare.uva.nl/personal/pure/en/publications/the-modular-smatrix-as-order-parameter-for-topological-phase-transitions(0eb4bfd5-04f8-48f0-b8b5-056b511e9c48).html
https://doi.org/10.1088/1367-2630/14/3/035024
https://doi.org/10.1088/1367-2630/14/3/035024


The modular S-matrix as order parameter for topological phase transitions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 New J. Phys. 14 035024

(http://iopscience.iop.org/1367-2630/14/3/035024)

Download details:

IP Address: 145.18.109.227

The article was downloaded on 12/02/2013 at 11:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/14/3
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

The modular S-matrix as order parameter for
topological phase transitions

F A Bais1,2 and J C Romers1,3

1 Institute for Theoretical Physics, University of Amsterdam, Science Park 904,
PO Box 94485, 1090 GL Amsterdam, The Netherlands
2 Santa Fe Institute, Santa Fe, NM 87501, USA
E-mail: j.c.romers@uva.nl

New Journal of Physics 14 (2012) 035024 (44pp)
Received 5 August 2011
Published 30 March 2012
Online at http://www.njp.org/
doi:10.1088/1367-2630/14/3/035024

Abstract. We study topological phase transitions in discrete gauge theories
in two spatial dimensions induced by the formation of a Bose condensate. We
analyse a general class of euclidean lattice actions for these theories which
contain one coupling constant for each conjugacy class of the gauge group. To
probe the phase structure we use a complete set of open and closed anyonic
string operators. The open strings allow one to determine the particle content of
the condensate, whereas the closed strings enable us to determine the matrix
elements of the modular S-matrix, in both the unbroken and broken phases.
From the measured broken S-matrix we may read off the sectors that split or
get identified in the broken phase, as well as the sectors that are confined. In this
sense the modular S-matrix can be employed as a matrix valued nonlocal order
parameter from which the low-energy effective theories that occur in different
regions of parameter space can be fully determined. To verify our predictions, we
studied a non-abelian anyon model based on the quaternion group H = D̄2 of the
order of eight by Monte Carlo simulation. We probe part of the phase diagram
for the pure gauge theory and find a variety of phases with magnetic condensates
leading to various forms of (partial) confinement in complete agreement with the
algebraic breaking analysis. Also the order of various transitions is established.
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1. Topological order and topological symmetry breaking

1.1. Introduction

The study of hidden symmetries and phase structure of gauge theories has a rich history.
A central motivation in the early works was to understand the confinement phenomenon in
non-abelian gauge theories. An important step forward was the lattice action formulation by
Wilson [1] and its Hamiltonian version by Kogut and Susskind [2], which allowed for an
expansion around the strong coupling limit where confinement is manifest. The question was
whether the confinement regime would extend all the way down to zero coupling. Wilson
also introduced his celebrated loop operator as a diagnostic for confinement in the pure gauge
theory.

Not long thereafter, ’t Hooft and Mandelstam [3] suggested confinement in 3+1
dimensions to be a consequence of the dual Meissner effect, caused by magnetic disorder,
notably a condensate of topological degrees of freedom, be it monopoles or fluxes. ’t Hooft
explained the (2 + 1)-dimensional version of confinement in SU (N ) gauge theories as a
consequence of the condensation of ZN fluxes corresponding to the centre elements of the gauge
group [4]. Polyakov, on the other hand, proved confinement of (2 + 1)-dimensional compact
QED due to monopoles [5] and showed furthermore that the finite-temperature deconfinement
transition in d = 3 + 1 is due to a Wilson line (string) condensate [6]. The interpretation of
such transitions is related to the spectrum of topological defects in the various Higgs phases.
For example for U (1) in 3+1 dimensions the occurrence of a phase transition depends on
the compactness of the group, i.e. on the presence of monopoles. For non-abelian groups the
situation depends on the representation of the Higgs field. In the case of SU (2) for example,
one may or may not find a phase transition between the confined and Higgs phases depending
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on whether the breaking is achieved with two adjoints or a fundamental representation. Shenker
and Fradkin [7] constructed the phase diagrams for the SU(2) (lattice) gauge theory for the
distinct cases with Higgs fields in the adjoint and the fundamental representation, and proved
the absence of a transition between the confined and the Higgs phase in the latter. The difference
can indeed be traced back to the topological structure: in the broken phase with a fundamental
Higgs no defects exist because the group is broken completely. In the broken phase with one
isovector, there is a residual U (1) and one has monopoles, and these will be confined if one
adds another generic isovector. However, with the two vectors there is still the Z2 centre of the
group which is unbroken, which implies the existence of Z2 fluxes in the broken phase.

Lattice formulations of the Z2 theories date back to the early 1970s [8, 9] and were
also studied in [7], where the phase diagram of the Z2 gauge theory with a matter field is
computed in detail. A Hamiltonian formulation of ZN gauge theories and their duality properties
in two and three dimensions was made in [10], where the same algebraic structure (1) was
constructed out of generalized Ising-type lattice models. All authors agree that the transition to
the confined phase is due to the condensation of magnetic fluxes. The analysis is facilitated by
the introduction of nonlocal order and disorder parameters such as the Wilson and ’t Hooft loops
and the algebra they form, from which the phase structure could be understood qualitatively.
As these operators are nonlocal, the algebraic structure exhibits the nontrivial braid properties
that characterize the phase. For ZN theories one obtains an underlying Zel

N ⊗Zmag
N symmetry

of which the electric, magnetic and dyonic (anyonic) charges form irreducible representations
(n,m) labelled by a pair of integers mod N (m, n = 0, 1, 2, . . . , N − 1). If one defines the loop
operators 1(n,m)(C), then ’t Hooft derived the crucial algebraic relation [3]:

1(n,m)(C) 1(n′,m′)(C ′)=1(n′,m′)(C ′) 1(n,m)(C) e2π i(nm′+mn′)k/N , (1)

where k ∈ Z is the linking number of the loops C and C ′. These loops can be interpreted
as linked timelike loops of worldlines obtained after creating and subsequent annihilation of
two particle–antiparticle pairs. But they can also be interpreted as two intersecting space-like
loops on a torus winding around the two different cycles, one being a Wilson line and the
other a magnetic Dirac string. On the other hand, one may think of equation (1) as specifying
the braiding relations for the representation theory of a ZN ×ZN algebra endowed with a
(unique) nontrivial braiding structure that exactly belongs to the quantum double algebra of
ZN denoted as D(ZN ). This operation on the torus is a topologically nontrivial vacuum-to-
vacuum transition (because no charges or fluxes are left) and that shows that there is a periodic
vacuum structure in the theory, leading to an N 2-fold vacuum degeneracy on the torus. This
degeneracy in turn is equal to the number of particle species, i.e. the total number of unitary
irreducible representations of D(ZN ), which for the case at hand is equal to N 2. Similar algebras
have surfaced in the study of emergent gauge theories from closely related lattice models such
as Kitaev’s toric code [11] and the Levin–Wen-type spin models [12], where furthermore the
vacuum degeneracy (of a gapped phase) on the torus is proposed as a criterion for topological
order.

It was also early on pointed out that ‘the’ Higgs phase structure of a gauge theory, where
no massless gauge degrees of freedom (no continuous groups) survive, may be very rich
by itself, allowing for distinct phases which exhibited different spectra of purely topological
degrees of freedom [13]. By breaking with sufficiently high-dimensional representations of
SU(2) for example, one finds that not just the centre, but any discrete subgroup of SU(2)
can be selected to survive, also non-abelian groups like DN , or the tetrahedral group, etc. In
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the corresponding phases, one finds a rich variety of non-abelian fluxes that exhibits highly
nontrivial braiding and fusion properties with charges and also among themselves. The effective
low-energy theory in such a Higgs phase is also called a discrete gauge theory (DGT); these
are indeed gapped phases with only topological degrees of freedom, and therefore by definition
phases with topological order. The full (2 + 1)-dimensional description of all the anyonic sectors
of discrete gauge theories was given in [14] and revealed an underlying hidden quantum group
structure, i.e. the excitations of a DGT with gauge group H were shown to correspond to the
irreducible unitary representations of the quantum double D(H) of H as defined by Roche
et al [15]. The most interesting aspect of this perspective is that the ordinary ‘electric charge’
and topological ‘magnetic flux’ degrees of freedom are both part of the same representation
theory, the magnetic degrees of freedom labelled by the conjugacy classes of H and the electric
parts by the representations of the centralizer group in H of the given magnetic flux. This leads
to a rather intricate interdependence of electric and magnetic sectors in case the goup H is non-
abelian and a different way to look at order and disorder operators. We return to D(H) and its
representations in section 2.2. An important consequence of this underlying symmetry is that
it suggested that in the pure DGT a corresponding set of gauge invariant loop operators should
exist, thereby generalizing the Wilson/’t Hooft operators to all anyonic species, and indeed such
operators have been constructed [16]. With these operators in hand, one can now probe the full
phase structure of discrete gauge theories in a lattice formulation and that is what will be done
in this paper.

The hidden quantum group symmetry and its representation theory that forms a modular
tensor category is a powerful way to characterize the distinct topological phases of pure DGTs
and forms the natural basis for the concept of topological symmetry breaking, which is defined
as the breaking of quantum group symmetry [17–19]. A brief review of this symmetry breaking
mechanism is given in section 1.3. In this paper, we study the validity of this mechanism by
probing the various ground states through measuring the expectation values of single as well as
linked anyonic loop operators, as is explained in section 1.4. In recent years we have witnessed
a growing interest in systems that allow for the realization of different topological phases; the
examples can be found in the Levin–Wen models [20], the Kitaev honeycomb model [21],
discrete gauge theories [17] and, last but not least, in quantum Hall systems [22–26]. Most of
these can be understood from the point of view of topological symmetry breaking involving the
formation of a Bose condensate. In most instances, a Hamiltonian framework is used, but in this
paper we show that to analyse such systems it may be profitable to switch to a euclidean action
formulation that allows for the use of Monte Carlo (MC) simulations to determine the phase
structure. In this approach, it is easy to directly measure the modular S-matrix in any phase of
the system, which explains why we call this matrix an order parameter of such a system. After
briefly recalling the basic ingredients of topological order and topological symmetry breaking
and settling some notation, we show how open string operators and the modular S-matrix can
be used as order parameters and phase indicators for topological symmetry breaking. We then
introduce a class of multi-parameter lattice actions for non-abelian discrete gauge theories and
verify the theoretical analysis [18, 19] in detail by numerical simulations.

1.2. Topological quantum field theory basics

In this section, we set the stage and fix the notation for the rest of this paper. We study phases of
systems that are described by a topological quantum field theory (TQFT) in 2 + 1 dimensions.
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We label the different sectors or (anyonic) particle species by a, b, c, . . .. The two interactions
between two particles in a TQFT are fusion and braiding.

Fusion. We describe fusion by the rule

a × b =

∑
c

N ab
c c, (2)

where the integer multiplicities N ab
c give the number of times c appears in the fusion product of

a and b. The fusion algebra is associative and commutative, and has a unique identity element
denoted as ‘1’ that represents the vacuum. Each sector a has a unique conjugate ā (representing
the corresponding anti-anyon) with the property that their fusion product contains the identity:

a × a = 1 +
∑
c 6=1

N aa
c c.

Braiding. The particles in a (2 + 1)-dimensional TQFT can have fractional spin and statistics.
Rotating a particle a by 2π (also called twisting) multiplies the state vector by a phase equal to
the spin factor θa

|a〉
twist
→ θa|a〉,

generalizing the usual +1 (−1) known from bosons (fermions) in 3 + 1 dimensions.
Adiabatically moving a particle a around another particle b in a channel c is called a braiding
and can have a nontrivial effect on the state vector of the system, given by θc/θaθb.

Quantum dimensions. The quantum dimensions da of particle species a are another set
of important quantities in a TQFT. These numbers satisfy the fusion rules (2), i.e. dadb =∑

c N ab
c dc. The quantum dimension of an anyonic species is a measure for the effective number

of degrees of freedom, corresponding to the internal Hilbert space of the corresponding particle
type. The Hilbert space dimension of a system with N identical particles of type a grows as
(da)

N for N large. In general, the quantum dimensions da will be real numbers; however, for
DGTs they are integers. The total quantum dimension D of the theory is given by

D =

√∑
i

d2
a ,

and the topological entanglement entropy of the ground state is proportional to logD.

Diagrammatics. There is a powerful diagrammatic language to express the equations
describing the TQFT, which we will use to relate the values of observables as they can be
measured in the different phases. In this paper, we will use the notation and definitions given
by Bonderson [27]. Particle species are represented by lines, fusion and splitting by vertices. A
twist is represented by a left or right twist on a particle line:

a

= θa a ,
a

= θ∗a a. (3)

The evaluation of simple diagrams is rather straightforward, and complicated diagrams can
be simplified using braid relations and the so-called F symbols which follow from associativity
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of the fusion algebra. The simplest examples are the closed loop of type a that evaluates to the
quantum dimension da:

a = da, (4)

whereas the twisted loop is equal to daθa:

a = θada (5)

Of particular interest are the generators of the modular group, Sab

a b

= Sab =
1
D

c

Nabc
θc
θaθb
dc, (6)

and Tab = e−2π i(c/24)θaδa,b, where the c is the central charge of the theory, not to be confused
with a particle type.

As we mentioned before, the importance of the rather abstract diagrammatic notation
is that the diagrams directly correspond to observables in our euclidean lattice gauge theory
formulation. In the euclidean three-dimensional (3D) formulation of topological theories the
values these diagrams have correspond to the vacuum expectation values of the corresponding
anyon loop operators; for example, in the unbroken phase one may measure

a

0
= da, (7)

where the left-hand side (lhs) is now defined as the value of the path integral with the nonlocal
loop operator for particle species a inserted and the right-hand side (rhs) is obtained if we are
probing the system in the unbroken phase governed with the ground state denoted as 0 and
governed by the algebra A. We use the subscript 0 because the value of the same diagram may
be different if it is evaluated in a different phase with a ground state that we will denote by 8;
in the remainder of the paper we will therefore always use brackets with a subscript.

1.3. Topological symmetry breaking

In this section, we briefly recall topological symmetry breaking, the phenomenon that a phase
transition to another topological phase occurs due to a Bose condensate [17, 18]. The analogy
with ordinary symmetry breaking is clear if one thinks of the particle as representations of some
quantum group, and assumes that a bosonic degree of freedom i.e. with θc = 1—fundamental
or composite—condenses. The breaking can then be analyzed, either from the quantum group
(Hopf algebra) point of view or from the dual or representation theory point of view [19].

Let us illustrate this with an example of ordinary group breaking. Suppose we have a
gauge group SU (3) and a Higgs triplet that acquires a vacuum expectation value 8= (1, 0, 0),
then the SU(2) subgroup working on the last two entries will leave 8 invariant. Equivalently,
this SU(2) subgroup may be characterized by the way the SU(3) triplet decomposes under
the SU(2) action as 3 → 2 + 1 where the singlet on the right corresponds exactly to the new
SU(2) invariant ground state. In that sense one may select a specific residual gauge symmetry
by choosing an appropriate Higgs representation which has a singlet under that residual group in
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its branching. For example, if we want to break an SU(3) group to the SO(3) subgroup which is
characterized by the branching rule 3 (as well as 3̄)→ 3, then we may choose the Higgs field to
be in the 6D irrep of SU(3), because then 3 × 3 = 3̄ + 6 → 3 × 3 = 1 + 3 + 5, from which follows
that 6 → 5 + 1 and again the singlet on the right corresponds to the SO(3) invariant vacuum
state 8.

In the case of general quantum groups it is this branching rule approach which is most
natural and powerful in the context of TQFT because the fusion algebra corresponds to the
representation ring of the quantum group. A general treatment with ample examples can be
found in [19]. Let us point out some essential features of this procedure that one has to keep
in mind. As the quantum group centralizes the chiral algebra in the operator algebra of a
CFT, one expects that reducing the quantum group will correspond to enlarging the chiral
algebra, and this turns out to be the case. In contrast to ordinary group breaking, the topological
symmetry breaking procedure involves two steps: firstly, the condensate reduces the unbroken
fusion algebra (also called a braided modular tensor category) A to an intermediate algebra
denoted by T . This algebra, however, may contain representations that braid nontrivially with
the condensed state, i.e. with the new vacuum and if that is the case, these representations will be
confined and will be expelled from the bulk to the boundary of the sample. Confinement implies
that in the bulk only the unconfined sectors survive as particles and these are characterized by
some subalgebra U ⊂ T . Let us briefly describe the two steps separately.

From A to T . Assuming that a certain bosonic irrep c will condense due to some underlying
interaction in the system implies that c will be identified with the vacuum of T . For our purposes,
a boson is a sector with trivial (integer) spin, although in fact in the context of 2 + 1 dimensions
one has to also require that fusion of this field with itself has a channel with trivial braiding.

The definition of the new vacuum requires a redefinition of fields. Firstly, fields in A that
appear in the orbit under fusion with the condensed field c are identified in T , so, if c × a = b
then a, b → a′. Secondly, if a field b forms a fixed point under fusion with the condensate c,
then the field will split at least into two parts: b →

∑
i bi . The identifications and splittings of

representations can be summarized by a rectangular matrix nt
a that specifies the ‘branching’ or

‘restriction’ of fields a from A to T with fields t, r, s, . . .:

a →

∑
t

nt
a t.

This branching matrix is a rectangular matrix (the number of particle types in the A and T
theories is not equal in general) of positive integers. We will also consider the transpose of this
matrix denoted as na

t , which specifies the ‘lift’ of the fields t ∈ T to fields a ∈A:

t →

∑
a

na
t a =

∑
a∈t

a.

One may now derive the fusion rules T from the fusion algebra (2). Because of the
identifications, it is often the case that the intermediate algebra T , despite being a consistent
fusion algebra, is not necessarily braided; in more technical terms, it satisfies the ‘pentagon’
equation but not the ‘hexagon’ equation. The physical interpretation of this fact is that the sectors
in T do not yet constitute the low-energy effective theory. This is so because sectors t that have
an ambiguous spin factor, meaning that not all θa of the lift a ∈ t are equal, will be connected
to a domain wall and hence are confined in the new vacuum. The confined excitations will be
expelled to the edges of the system or have to form hadronic composites that are not confined.
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Yet the T algebra plays an important role: in [24] for example, it was shown that the T algebra
governs the edge/interface degrees of freedom in the broken phase.

From T to U . Some of the sectors in T will survive in the bulk and some will be confined.
The physical mechanism behind confinement in (2 + 1)-dimensional topological field theories is
nontrivial braiding with the condensate. The vacuum state or order parameter should be single
valued if carried adiabatically around a localized particle like excitation. If it is not single valued
that would lead to a physical string or ‘domain wall’ extending from the particle that carries a
constant energy per unit length. The unconfined algebra U consists of the representations in T
minus the confined ones; it is this algebra that governs the low-energy effective bulk theory. The
confined representations can be determined in the following way. First we define the ‘lift’ of a
representation in T as the set of representations b ∈A that are restricted to t . Now, if all of the
representations in the lift of t braid trivially with the lift of the vacuum, the sector t is part of
U . Otherwise, it is confined. One may prove that the U algebra closes on itself with consistent
fusion rules, while consistent braiding is achieved by assigning the (identical) spin factors of
the parent sectors of the unbroken theory to the U fields.

Let us finally mention a useful quantity, the so-called quantum embedding index q defined
in [28]; it is a real number characterizing the topological symmetry breaking. This quantity is
defined as

q =

∑
a na

uda

du
, (8)

where the index a runs over the sectors of the unbroken phase A, which correspond to the lift
of any sector u or t of the algebra U or T ; the na

u is the lift of sectors u to their parents a and da

is the quantum dimension of the representation a. Observe that this expression is independent
of the particular sector u, which is a non-trivial result explained in [28].

Choosing for u the new vacuum, we have du = 1 and obtain that q just equals the total
quantum dimension of the lift of the U (or T ) vacuum in the unbroken A theory. The quantum
embedding index is the analogue for the embedding index defined by Dynkin for the embedding
of ordinary groups. As an aside we mention that the change in topological entanglement entropy
of the disc changes also by log(DA/DU )= log q in a transition from an A to a U phase [28].

Let us, to conclude this subsection on topological symmetry breaking, illustrate the
procedure with a very straightforward example, namely the breaking of the quantum groupA=

SU(2)4. It has five irreps labelled by3= 0, . . . , 4 with spin factors θa = 1, 1
8 ,

3
8 ,

5
8 , 1. The3= 4

is the only boson and we assume it to condense. The lift of the new vacuum corresponds to the
8= 0 + 4 of A, and hence the embedding index q = d0 + d4 = 1 + 1 = 2. The 1 and 3 reps of A
are identified, but because they have different spin factors, the corresponding T representation
will be confined. In U we are therefore left with the3= 2 rep., which splits because it is a fixed
point under fusion with the condensate as 4 × 2 = 2. We write 2 → 21 + 22. The values for the
spin and the quantum dimensions and the fusion rules for these representations fully determine
the unconfined quantum group to be U = SU(3)1. We recall that the nomenclature of the groups
is linked to the chiral algebra; it is therefore not surprising that the SU(2)4 quantum group breaks
to the smaller quantum group SU(3)1, which is related to a larger chiral algebra. For the chiral
algebras one has the conjugate embedding SU(2)4 ⊂ SU(3)1 which is a conformal embedding.
This conformal embedding in turn is induced by the SO(3)⊂ SU(3) embedding mentioned at
the beginning of this subsection.
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1.4. Observables

Our objective is to verify the theoretical predictions of the topological symmetry breaking
scheme in a class of euclidean gauge theories that are expected to exhibit transitions between
different topological phases. We will numerically evaluate the expectation values of various
topological diagrams using MC simulations, and in this section we calculate the predicted
outcomes of a variety of possible measurements from theory. The strategy has two steps:
(i) determination of the condensate (including the measurement of the embedding index
q) by evaluating the basic nonlocal open string order parameters, given by equation (33);
(ii) measuring the so-called broken modular S-matrix and from that construct the S-matrix of
the U phase. We also will see that the condensate fixes the branching and lift matrices and
having determined those we can also predict the outcome of measurements of other topological
diagrams corresponding to the lifts of U fields to A fields.

1.4.1. Determination of the condensate and the embedding index q. We measure the open
string operators in the model. Note that in our pictorial representation time flows upward, so a
vertical line physically represents the creation, propagation and annihilation of a single particle.
For the particular case of a DGT, which we study in this work, these lines have a realization as
operators on a spacetime lattice, see equation (33).

If the symmetry is unbroken we will have for any nontrivial field a that

Laā 0 = a

Φ=0

= 0, (9)

because the diagram represents the creation and subsequent annihilation of a single a-particle.
However, in the broken situation the expectation value will be nonzero for all fields φi ∈A in
the condensate, which we denote by 8. So writing

8= 0 +
∑

i

φi , (10)

we obtain that, in general,

a

Φ

= δaφida. (11)

This in turn implies that it is simple to measure q as

a∈A
a

Φ

= 0
Φ

+
i

φi

Φ

= d0 +
i

dφi = q. (12)

1.4.2. Determination of confinement and other topological data of the broken phase. Once we
have determined the components of the vacuum we can determine the lifts of the t fields, simply
by studying the fusion rules of 8× a =

∑
t ′, where t ′ denotes the lifts of those t fields which

contain a, i.e. for which na
t = 1. Having obtained the lifts of the t fields the next step is to make
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the measurement determining whether a given t field is confined. This involves the measurement
of the index η, or simply:

a∈t
a

Φ

= q
a∈t
θada = q2dtηt =

0 if t /∈ U (confined)
q2θuduif t ∈ U (not confined). (13)

Alternatively, one can measure certain closed ai loop operators that are also defined for fields a
that split under branching and that will be defined later, for which it holds that:

ai
Φ
= ai

0
+
j ai φj 0

=
0 if t /∈ U (confined)
q2θudu if t ∈ U (not confined). (14)

It follows that, from these measurements, the fields that are confined can be determined, but also
the quantum dimensions du and twists θu of the unbroken U theory are obtained.

1.4.3. The broken modular S- and T-matrices. Instead of the fusion coefficients N ab
c , an

alternative specification of a (modular) topological field theory is by its representation of the
modular group SL(2,Z) generated by the S- and T-matrices

S2
= (ST )3 = C, S∗

= CS = S−1, T ∗
= T −1, C2

= 1, (15)

with C being the charge conjugation matrix. The corresponding matrix elements can be
expressed in the fusion coefficients and spin factors:

Sab =
1

D

∑
c

N ab
c

θc

θaθb
dc, (16)

Tab = e−2π i(c/24)θaδa,b, (17)

where D is the total quantum dimension and the constant c is the conformal central charge of
the corresponding conformal field theory. We recall that the central charge of a DGT is zero, so
in that case the T -matrix is just the diagonal matrix containing the spin factors.

The great advantage of switching to the modular data is that unlike the fusion coefficients
these generators can be directly measured using the anyon loop operators that arise naturally
in a 3D euclidean formulation of the theory. We will evaluate the expectation value of these
S-matrices numerically in our lattice formulation of multiparameter discrete gauge theories
later on. The measured S- and T -matrix elements do not satisfy the relations (15) directly;
however, using the measurements the full S- and T -matrices of the U theory, which do satisfy
the modular group relations, can be constructed. In the unbroken theory, the measured S-matrix
elements 〈Sab〉 correspond to the expectation values of the Hopf link with one loop coloured
with representation a and the other with representation b:

Sab 0 =
1
D ba

0
= Sab,

where Sab is the S-matrix of the unbroken A theory. We can, however, also determine the
modular S-matrix of the residual U theory Suv directly from measurements if we take the
splittings of certain fields a ⇒ {ai} into account appropriately. We will show how to do this later

New Journal of Physics 14 (2012) 035024 (http://www.njp.org/)

http://www.njp.org/


11

for the DGTs in detail and give a more general mathematical treatment of this elsewhere [29].
Then we will arrive at an explicit formula and algorithm to determine Suv:

Suv =
1

q

∑
ai ,b j

nai
u nb j

v

〈
Sai b j

〉
8
. (18)

This expression involves not only the branching (lift) matrix nai
u , but also what we will call the

broken S-matrix defined as S̄ai b j = 〈Sai b j 〉8, which, because of the splitting, clearly involves
a larger size matrix than the modular S-matrix of the original A phase. From the broken
S-matrix we may directly read off Suv, the S-matrix of the effective low-energy TQFT governed
by U . An important observation is that the values of the S-matrix elements in a broken phase
will be different from the ones in the unbroken phase, for example because of the contribution of
the vacuum exchange diagram S̃ depicted below, in which the condensed particle is exchanged
giving a nonzero contribution in the broken phase, while it would give a vanishing contribution
in the unbroken phase:

S̃ .aibj =
1
q2

ai bj

In the explicit calculations later on we show that this vacuum exchange diagram leads to a
change in the S-matrix which depends on the subscripts introduced above. It turns out that it is
also possible to calculate the broken S-matrix from first principles; this will be discussed in a
forthcoming paper [29].

As is to be expected, one finds identical rows and columns in the broken S-matrix, for
components that are identified, whereas the entries for confined fields will be zero. With this
prescription the formalism outlined above is applicable in any phase of the theory including the
unbroken one where there is no splitting and the vacuum exchange diagram gives a vanishing
contribution. The measured T -matrix, on the other hand, is given by

Tab Φ =
δab
da

a

Φ

again with 〈Tab〉0 = Tab. After measuring or calculating the S- and T -matrices in a given phase,
we can reconstruct the fusion coefficients with the help of the Verlinde formula [30]

N c
ab =

∑
x

Sax Sbx Scx

S1x
. (19)

To conclude, we have in this section summarized the basic features of a TQFT and considered
some aspects of topological phase transitions induced by a Bose condensate; furthermore,
we explained how the measurement of the L-, S- and T -operators in the broken phase fully
determine the quantum group of a (broken) topological phase. The general scheme to analyse the
breaking pattern of some multiparameter TQFT is to first use the open string operators to probe
which fields are condensed in the various regions of parameter space. In a given broken phase
we can subsequently compute/measure what we will call the broken S-matrix S̄ai b j , where,
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as mentioned, the subscript labels the splitting of the corresponding A field. From the broken
S-matrix, we can read off the S-matrix of the U theory. In the remainder of the paper, we will
explicitly execute this program for discrete gauge theories.

2. A euclidean lattice approach to discrete gauge theories (DGT)

2.1. Z2 gauge theory and topological order: a prelude

Before applying our approach to (non-abelian) discrete gauge theories (DGTs) in general, let us
make some connections to previous work from different perspectives. After Wilson’s seminal
work on euclidean lattice gauge theory for non-abelian Lie groups to study the confinement of
quarks [1], a Hamiltonian formalism for the same problem was soon developed [2]. It was clear
that because the gauge fields now take values in the group instead of the Lie algebra, one could
also study models based on a finite group.

These models, which we call DGTs, were mostly studied as approximations to U(1) or
SU(N ) theories in times when computers were not as powerful as they are today. They are,
however, also interesting in their own right, since they are purely topological: there are no local
degrees of freedom, and only the topological (generalized Aharonov–Bohm-type) interactions
survive.

This does not automatically mean that all observables are topological quantities: the
appearance of virtual flux–antiflux pairs gives small size-dependent corrections to the loop-like
observables in these theories. However, since these excitations are gapped, these corrections are
exponentially small. We will show below by explicit calculation that as long as one stays away
from the critical points, it is justified to think of the observables in these theories as topological
quantities.

2.1.1. Hamiltonian formalism. To connect with other work on topologically ordered systems,
let us first go to a Hamiltonian formalism. This is formally done by taking a time slice of the
spacetime lattice and taking the limit in which the temporal spacing goes to zero [31]. The
Hamiltonian of (2+1)-dimensional Z2 gauge theory on a square spatial lattice is

H = −
1

2
λ
∑

l

(Pl − 1)−
∑

p

1

2
(Q p1 Q p2 Q p3 Q p4 − 1), (20)

where the operators Pl and Ql act on links, the second term is a sum over the elementary
plaquettes of the lattice where p1, . . . , p4 are the links of a single plaquette and λ is the coupling
constant. The operators satisfy

{Ql, Pl} = 0, P2
l = Q2

l = 1,

which means that a possible representation can be given in terms of the Pauli matrices Pl = σ3,
Ql = σ1 acting on spin-1

2 bosons living on the links. Note that the algebra above is the same
as the Z2 version of (1), and indeed a closed string of Pi operators generates a Wilson loop,
whereas a closed string of Qi operators creates a closed Dirac string. Gauge transformations act
on the star of four links i1, . . . , i4 adjacent to a site i

G i = Pi1 Pi2 Pi3 Pi4,
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and to build the gauge invariant Hilbert space, one has to implement a Gauss law for physical
states |ψ〉

(1 − G i)|ψ〉 = 0 for all sites i . (21)

Now we can make the connection with the work by Kitaev [32] and Hastings and Wen [33].
Their models (Toric code, Z2 string nets) correspond to Hamiltonian Z2 DGT where the
coupling λ= 0 and the gauge constraint (21) is not strictly enforced. Setting λ= 0 makes the
theory purely topological, the ground state is an equal weight superposition of all states∏

l∈C

Ql |0〉, (22)

where C is a closed loop of links and |0〉 is the state with the property Pl |0〉 = |0〉 for all links l.
Viewing the link variables as spin- 1

2 bosons, this vacuum state corresponds to all the spins being
in the up state. Since the expectation value of any loop operator (22) in the ground state is equal
to one, and these loops are Wilson loops in the gauge theory language, the theory is topological.

By not enforcing the gauge constraint (21) strictly but adding it as a term to the
Hamiltonian, these models allow for massive open strings. Such open strings are not gauge-
invariant at their endpoints and therefore correspond to external charges.

2.1.2. Euclidean formalism. The Z2 gauge theory in the euclidean approach, where we
discretize both space and time, is described by the action

S = −β
∑

p

Up1Up2Up3Up4, (23)

where the sum is again over all plaquettes (now both spatial and temporal) and the U variables
are numbers ±1. The partition sum

Z =

∑
{U }

e−S

and the expectation value of gauge invariant operators O

〈O〉 =
1

Z

∑
{U }

O({U }) e−S

are the quantities of interest here. The gauge invariance, which in the Hamiltonian formulation
was enforced by projecting out states from the Hilbert space, is now manifest in the action and
the operators. The partition sum is over all gauge field configurations, but since all sums are
finite, gauge fixing is not required4.

If the coupling β is large, the dominant contribution from the partition sum will be from
field configurations where all plaquettes UUUU = +1. In the limit β → ∞, this is strictly true,
and one is left with a TQFT, as was the case for the Hamiltonian (20) with λ= 0. For β small
there is a confining phase; the phase transition is at β = 0.7613 [34].

In most of this work, we study the topological properties of a DGT, for a general group H .
To show that for a finite coupling constant β this is a good approximation, let us perturbatively

4 This holds even for continuous groups, since we integrate over the group instead of the algebra.
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calculate the expectation value of a Wilson loop in this Z2 theory. The Wilson loop W (C) is the
product of U variables around a closed loop C

〈W (C)〉 =
1

Z

∑
{U }

UU · · · U e−S.

For large β, the action is minimized by configurations for which all plaquettes are +1. The
first-order perturbation comes from those configurations in which one link is −1. In three
dimensions, this excites four plaquettes, so the Boltzmann weight for such configurations is
e−4β smaller than for those with no excited plaquettes.

If the lattice has size N × N × N , there are 3N 3 links. For a contour C of length L ,

〈W (C)〉 ≈
1 − Le−4β + (3N 3

− L)e−4β

1 + 3N 3 e−4β
≈ 1 − 2L e−4β + O(e−8β).

This shows that the corrections to the purely topological result W (C)= 1 are, for β several
times larger than the critical point, negligible for simulations of reasonable lattice sizes: for a
Wilson loop size 10 × 10, β = 3.0 yields corrections only in the third digit.

Another gauge-invariant quantity is the ’t Hooft loop, which lives on a loop C ′ of the dual
lattice. Such a loop pierces a number of plaquettes p, and the ’t Hooft operator

H(C ′)=

∏
p∈C ′

e−2β Up1Up2Up3Up4

flips the sign of the coupling β → −β for these plaquettes. This forces a Z2 magnetic flux
through these plaquettes. We will define operators generalizing the ’t Hooft and Wilson loops
for general non-abelian DGTs shortly.

2.1.3. Phase structure. The action (23) can realize three phases when one also allows for
negative coupling. For large positive β, the phase mentioned before is realized, where almost all
plaquettes are +1. For large negative β, almost all plaquettes are −1. For small |β|, a confining
phase where the magnetic Z2 flux has condensed is realized.

To study the phase diagram of a (non-abelian) DGT in full, we find it convenient to
formulate the action in the class basis, instead of the irrep basis. This means that we do not
take the character of the group element of the plaquette product UUUU in the action, but we
define delta functions on each class. We will explain in detail how this works in section 2.3. For
Z2 the phase diagram is one dimensional, but the introduction of a second coupling constant
will get rid of the need for negative couplings:

S = −

∑
p

(
β+1δ+1(Up1Up2Up3Up4)+β−1δ−1(Up1Up2Up3Up4)

)
,

where δA(U ) for a group element U and a conjugacy class A gives +1 if U ∈ A and zero
otherwise. For non-abelian groups this formulation makes the phase diagram much more
intuitive; for Z2 it is rather artificial.

In figure 1 the phase diagram of the pure Z2 gauge theory is shown as a function of the
conjugacy class couplings β+1 and β−1. Later in this work, we present similar phase diagrams
for the D̄2 gauge theory.

It is well known that the inclusion of matter coupled to the gauge fields complicates
the phase diagram strongly. The question of whether there exist good order parameters to
distinguish the phases in coupled gauge–matter systems is interesting in its own right and highly
nontrivial [35], but it is not something we will go into here.
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+1

-1

Confining phase

U  = -1p

U  = +1p

Ordered phase

Ordered phase

Figure 1. Phase diagram for a pure Z2 gauge theory.

2.2. DGT and the quantum double of a finite group

The particles in a DGT, their fusion and braiding properties, spins and so on are all obtained by
working out the representation theory of the underlying quantum group, which is the quantum
double of the finite discrete subgroup. We will not give a detailed account of the emergence of
quantum group symmetry in DGT, as this can be found in the literature [14], but we do present
a short summary of the basics to fix the notation and introduce some key concepts required
later on.

Consider the following operators acting on states in the Hilbert space of a DGT. Firstly,
there is the flux projection operator, denoted by Ph , which acts on a state |ψ〉

Ph |ψ〉 =

{
|ψ〉 if the state |ψ〉 contains flux h,

0 otherwise.

Secondly, we have the operator g, for each group element g ∈ H , which realizes a global gauge
transformation by the element g:

g |ψ〉 = |
gψ〉,

where it should be noted that we have not yet modded out by the gauge group to obtain the
physical Hilbert space. These operators do not commute, and realize the algebra

Ph Ph′ = δh,h′ Ph,

g Ph = Pghg−1 g.

The set of combined flux projections and gauge transformations {Phg}h,g∈H generates the
quantum double D(H), which is a particular type of algebra called a Hopf algebra.

The representation theory of the quantum double D(H) of a finite group H was first
worked out in [15], but here we follow the discussion presented in [36] and follow the
conventions of those lecture notes.

Let A be a conjugacy class in H . We will label the elements within A as{
Ah1,

Ah2, . . . ,
Ahk

}
∈ A,
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for a conjugacy class A of order k. In general, the centralizers for the different group
elements within a conjugacy class are different, but they are isomorphic to one another. Let
A N ⊂ H be the centralizer for the first group element in the conjugacy class A, denoted
by Ah1.

The set A X relates the different group elements within a conjugacy class to the first:

AX =
{

Axh1,
Axh2, . . . ,

Axhk

∣∣ Ahi =
Axhi

Ah1
Ax−1

hi

}
. (24)

This still leaves a lot of freedom, but we fix our convention such that Axh1 = e, the group identity
element. The centralizer A N , being a group, will have different irreps, which we label by α.
The vector space for a representation α is spanned by a basis αv j . The internal Hilbert space
corresponding to an irrep of the quantum double that combines magnetic and electric degrees
of freedom, V (A,α), is then spanned by the set of vectors{

|
Ahi ,

αv j〉
}
,

where i runs over the elements of the conjugacy class, i = 1, 2, . . . , dim A and j runs
over the basis vectors of the carrier space of α, j = 1, 2, . . . , dim α. These irreducible
representations correspond precisely to the particle types a, b, . . . in section 1.2. They obey a
set of fusion rules as in (2) and it is possible to calculate the modular S-matrix, F-symbols and
so on.

To see that this basis is a natural one to act on with our flux measurements and gauge
transformations, consider the action of a pure flux projection Phe

Phe|Ahi ,
αv j〉 = δh,Ahi |

Ahi ,
αv j〉

and a pure gauge transformation
∑

h Phg∑
h

Phg|
Ahi ,

αv j〉 =

∣∣∣∣∣g Ahi g−1,
∑

m

Dα(g̃)mj
αvm

〉
.

The matrix action 5(A,α) of an irreducible representation (A, α) of some combined projection
and gauge transformation Phg:

5(A,α)(Phg)|Ahi ,
αv j〉 = δh,g Ahi g−1

∣∣∣∣∣g Ahi g−1,
∑

m

Dα(g̃)mj
αvm

〉
, (25)

where the element g̃ is that part of the gauge transformation g that commutes with the flux Ah1,
defined as

g̃ =
Ax−1

ghi g−1 gAxhi , (26)

and Dα(·)i j is the matrix representation of the centralizer.
To conclude, we give a simple expression for the modular S-matrix that can be obtained by

calculating the trace of the monodromy matrix

S(A,α)(B,β) =
1

|H |

∑
g∈A,h∈B,[g,h]=e

Trα(x
−1
g hxg)

∗ Trβ(x
−1
h gxh)

∗, (27)

where [g, h] is the group theoretical commutator: [g, h] = ghg−1h−1.
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Figure 2. In our convention a gauge transformation g at location i1 transforms
Ui1i2 → gUi1i2 , Ui1i4 → gUi1i4 , Ui1i6 → gUi1i6 , Ui0i1 → Ui0i1 g−1, Ui3i1 → Ui3i1 g−1,
Ui5i1 → Ui5i1 g−1.

2.3. Lattice actions and observables

We discretize the 3D spacetime into a set of sites i, j, . . . using a rectangular lattice. The gauge
field Ui j , which takes values in the gauge group H , lives on the links i j, jk, . . . connecting sets
of neighbouring sites. The links are oriented in the sense that Ui j = U−1

j i [1].
We note that the gauge field Ui j takes care of the parallel transport of matter fields that are

charged under the gauge group from site i to site j . An ordered product of links along a closed
loop is gauge invariant up to conjugation by a group element and measures the holonomy of
the gauge connection. Gauge transformations are labelled by a group element gi ∈ H and are
performed at the sites of the lattice. The gauge field transforms as

Ui j 7→ gi Ui j g−1
j , (28)

where the orientation of the links (incoming or outgoing) has to be taken into account as shown
in figure 2.

The standard form for the lattice gauge field action makes use of the ordered product of
links around a plaquette i jkl:

Up = Ui jkl = Ui j U jk Ukl Uli ,

which transforms under conjugation by the gauge group,

Up 7→ gi Up g−1
i .

The gauge action per plaquette that corresponds to the Yang–Mills form F2
µν in the continuum

limit for H = SU(N ) is given by

Sp = −

∑
α

βαχα
(
Up

)
, (29)

where χα is the group character in irrep α and βα is inversely proportional to the square of the
coupling constant for irrep α. This is known, for H = SU(2) and the sum over representations
limited to the fundamental one, as the Wilson action [1]. The action (29) is the euclidean
analogue of the Kitaev Hamiltonian introduced in [32] (which in itself is a variation of
the Kogut–Susskind Hamiltonian [2]) where the electric field is represented by the timelike
plaquettes and the gauge constraint (21) is not necessary since everything is manifestly gauge
invariant.
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For SU(N ) gauge theories, one usually only includes the fundamental representation and
is thus left with only one coupling constant. This is not necessary however: gauge invariance
of the action is ensured by the fact the characters are conjugacy class functions and therefore
we will consider actions where the number of independent couplings is equal to the number
of conjugacy classes i.e. the number of irreps (for a finite group, these numbers are finite and
equal).

For our purposes, namely the study of magnetic condensates in DGTs, equation (29) is
not the most convenient to work with. We perform a change of basis in the space of coupling
constants to write it as a sum over delta functions on conjugacy classes: δA(h)= 1 if h ∈ A, and
0 otherwise. In this basis the action becomes

Sp = −

∑
A

βAδA

(
Up

)
.

This formulation allows us, in particular, to control directly the mass of the different fluxes in
the theory, which will ease the search for different vacua in the phase diagram. Increasing the
coupling constant for a certain conjugacy class (magnetic flux) A will increase the contribution
of configurations carrying many A fluxes to the path integral. Likewise, setting all βA to zero
except βe, the coupling constant for the trivial conjugacy class will result in an ‘empty’ vacuum
and therefore an unbroken phase.

To perform the transformation to the conjugacy class basis, we need to make use of the
following orthogonality relations valid for all finite groups H :∫

H
dg χα(g)χ

∗

β (g)= δα,β, (30)

∑
α∈R

χα(g)χ
∗

α(h)=
|H |

|A|
if g, h ∈ A,

= 0 otherwise, (31)

where |H | is the order of the group H , |A| is the order of the conjugacy class A, R is the set of
irreps and group integration is defined as∫

H
dg f (g)=

1

|H |

∑
g∈H

f (g).

Equations (30) and (31) show that the irreducible representations of a group H form an
orthonormal set for functions on conjugacy classes of H . We thus expect the conjugacy class
delta function to be expressible in terms of characters

δA(g)=

∑
α∈R

cαχα(g),

for some set of constants {cα}. We multiply both sides of this expression by a character of
the same group element in another irrep β and perform the integrations by the use of the
orthogonality relations (30) and (31)∫

H
dg χ∗

β (g)δA(g)=

∑
α∈R

cα

∫
H

dg χ∗

β (g)χα(g),

|A|

|H |
χ∗

β (A)=

∑
α∈R

cαδαβ = cβ,
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where the slightly abusive notation χα(A) means the character of any group element of A in the
representation α. This shows that

δA(g)=

∑
α∈R

|A|

|H |
χ∗

α(A)χα(g), (32)

which in turn implies that the difference between (29) and (30) is just a change of basis:∑
A∈C

βA(βα)δA(g)=

∑
α∈R

βαχα(g),

where C is the set of conjugacy classes and βA(βα) is given by

βA =

∑
α

βαχα(A).

To probe the physics of the system for a fixed set of values of the coupling constants in the
action, we will use a set of order parameters and phase indicators. These order parameters are
in one-to-one correspondence with the set of fundamental anyonic excitations of the theory.

Order parameters and phase indicators. We distinguish two different sets of order parameters
that are closely related to one another. The first is the set of closed loop operators, which
physically correspond to the creation, propagation and annihilation of an anyon–anti-anyon
pair in spacetime. The second is the set of open string operators that create, propagate and
annihilate a single anyon. In the background of a trivial vacuum, only the loops can have
nonzero expectation values, since the creation of a single particle would violate the conservation
of the quantum numbers of the vacuum in such a background. This means that the open
strings tell us something about possible Bose condensates, whereas the closed loops tell us
about the behaviour of external particles put into this background. We define the open string
operators only for the purely magnetic sectors, since in this work we only study magnetic
condensates5.

First we will define the loop operators. This set of nonlocal order parameters was
introduced in a previous publication [16]. For a full discussion, see that work. Here we recall
the essentials and fix the notation. The closed loops are a generalization of the Wilson and
’t Hooft loops. They create a particle–antiparticle pair from the vacuum and annihilate them at
a later time. These loops allow us to calculate the Aharonov–Bohm-type phases and determine
which anyonic excitations will be confined. In SU(N ) gauge theories, the Wilson loop for a free
excitation, e.g. in the Higgs phase of SU(2) theory, in general falls off as e−cP , with P being the
perimeter of the loop, whereas a confined excitation, such as the 3 charge of an external quark
source in pure SU(3) gauge theory describing QCD, falls off as e−c′ A, with A being the area of
the loop.

Because the excitations in a DGT are gapped, numerically we find that the expectation
values of loop operators are constant as a function of size. The argument for this behaviour for
the Z2 theory is in section 2.1.2. Although strictly true only in the limit of infinite coupling con-
stant, the gap suppresses the dependence on size so strongly that we will assume that the theory
is a purely topological one in the region of coupling constant space that we are interested in.

5 Electric condensates break the gauge group H to some subgroup K by the conventional Higgs breaking; this
implies in the present context that D(H) will be broken to D(K ), which in turn means that the fluxes in the coset
G/H are confined [18].
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Figure 3. The first two plaquettes appearing in expression (33). The ordered
product Up of links around a plaquette ‘p’ needs to be taken with an orientation
that has to be constant throughout the loop.

Let us draw a closed loop on the dual lattice; this loop pierces a set of plaquettes C through
which we will force magnetic flux. Now draw another loop, this time on the real lattice, such
that (i) each point of this loop lies on the corner of a plaquette in C and (ii) the two loops do
not link6. The combination of the two loops establishes a framing: we have selected a location
for the electric charge of a flux–charge composite. This framing also provides us with a point
and orientation on each plaquette from which to take the plaquette product Up: for non-abelian
groups the product of the four links depends on which corner you start.

To insert a flux h in a plaquette p ∈ C , we have to ‘twist’ the Boltzmann factor of this
particular plaquette by locally changing the action from S(Up) to S(h−1Up): if the minimum of
the action was previously obtained for Up = e, it is now shifted to Up = h. We want to perform
this twisting procedure for all plaquettes in C . Figure 3 shows the first two plaquettes of such a
loop C .

The notion of a group element as a magnetic flux is not gauge-invariant: under a gauge
transformation by g, a flux h transforms as gh g−1. Therefore it is necessary to sum over the
group elements h in a conjugacy class A in some way.

One can go about this in two different, and inequivalent, ways.

• The authors of [37] only studied pure magnetic flux loops (without electric charge) and
performed a sum over the conjugacy class for each plaquette in C individually. This leaves
a gauge-invariant expression, but the loop loses its framing, since a conjugation by the
element U01 maps

h−1U01U12U23U30 → U01h−1U12U23U30,

for a plaquette spanned by group elements U01, . . . ,U30.

• When dealing with nontrivial braiding properties of loop operators, it is necessary to
choose a basepoint i0 in space with respect to which all operators are defined; it provides

6 One can also create loops that have a linking number; the expectation values of such loops allow one to calculate
the topological spin for a given excitation.
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a calibration that serves as a ‘flux bureau of standards’, borrowing a term from [38]. This
point can be anywhere in spacetime and does not need to be on the loop. We then define
a function ki p(h, {Ui j}) of h and the gauge field variables {Ui j} for the twist element that
has to be inserted into the plaquette product for plaquette p, where i p is the corner of the
plaquette chosen in the framing

ki p = ki p(h, {Ui j})= U−1
i0i p

h−1Ui0i p .

With this notation and the above considerations, the anyonic operator1(A,α) is given by 7

1(A,α)(C)=

∑
h∈A

∏
p j ∈C

Dα

(
x−1

U j−1, j k j U−1
j−1, j

U j−1, j xk j

)
eS(Up j )−S(k j Up j ). (33)

Here p j iterates over the plaquettes in C and Dα is the representation function of the centralizer
irrep α of A N . The link U j−1, j neighbours the plaquette p j , and the combination in brackets
always takes values in the centralizer subgroup of the conjugacy class A. The exponential of the
difference of two actions changes the minimal action configuration to one containing flux h for
the plaquette under consideration.

The operator in expression (33) is a generalization of the Wilson and ’t Hooft loops, and by
constructing it we have established the desired one to one correspondence between irreducible
representations of the quantum group and loop operators for the pure DGT. If we fill in for A the
trivial conjugacy class, the exponent vanishes and the x group elements are equal to the group
unit, so after we multiply out the Dα-matrices we are left with

1(e,α)(C)= χα
(
U1,2U2,3 · · · Un−1,nUn,1

)
,

where the product of Us is an ordered product along the loop on the lattice.
On the other hand, if we replace α by the trivial representation, we are left with

1(A,1)(C)=

∑
h∈A

∏
p j ∈C

eS(Up j )−S(hp j Up j ),

which is comparable to the order parameter proposed in [37], but the gauge invariance with
respect to the transformations (28) is ensured in a different way. We sum over the conjugacy
class only once and insert the flux in a gauge invariant way by parallel transporting it along
the loop from a fixed basepoint. The operator in [37] sums over the conjugacy class for each
individual plaquette. This way also gauge invariance is achieved, but the loop loses its framing
and therefore is not suitable for describing true anyonic charges.

The open magnetic string operators are a variant of expression (33) where the set of
plaquettes C corresponds to an open string on the dual lattice. Looking at the h-forest
configurations, it can immediately be seen that such a string, corresponding to the creation and
subsequent annihilation of a single particle, has zero expectation value in the trivial vacuum.
For these strings to acquire a nonzero expectation value, a vacuum exchange contribution is
required, which we will focus on now.

The vacuum exchange contribution. We use the set of operators {1(A,α)
} to measure the

elements of the S-matrix by picking two loops C1 and C2 that link each other once:〈
S(A,α)(B,β)

〉
=
〈
1(A,α)(C1)1

(B,β)(C2)
〉
. (34)

7 This definition is different from our original definition [16] by a factor of 1
|A|

. This definition gives the correct
S-matrix elements directly.
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Figure 4. A set of plaquettes forming a closed loop on the lattice. The fat links
constitute the h-forest.

In the trivial vacuum the S(A,α)(B,β)-matrix elements of fluxes g ∈ A and h ∈ B for which
gh g−1 h−1

= [g, h] 6= e evaluate to zero (this is what we measure using the operators (33)
and calculate algebraically (27)). If we, however, measure the S-matrix elements of such
noncommuting fluxes in a broken vacuum, nonzero matrix elements can appear.

This is most easily explained by considering an example. The main contribution to a single
loop of pure magnetic flux is of the form depicted in figure 4. This configuration is called
the h-forest state in the earlier work [37]. Modulo gauge transformations are the dominant
configuration in the trivial vacuum that contributes to a loop of flux labelled by conjugacy class
A, where g ∈ A. Expression (33) contains a sum over these group elements within a conjugacy
class, but let us for now focus on one of the group elements. Each link in this configuration has
the value e, except for the fat links in figure 4, which have the value h. That this configuration
leads to a loop or tube of flux is easily seen: within the forest each plaquette has a value
e h e h−1

= e, whereas at the edges the value is e h e e = h (depending on the orientation of
the plaquette product). This is also the easiest way to see the origin of the Aharonov–Bohm
effect on the lattice: an electric charge loop having linking number 1 with the flux loop will
have exactly one link with the value h in it; therefore its value will be χα(h).

Consider now the dominant configuration that contributes to the S-matrix element
S(A,1)(B,1). We again pick two group elements g ∈ A, h ∈ B and draw a similar diagram. This
is shown in figure 5. By a similar logic this causes the plaquettes at the boundary of either forest
to have the value g, respectively h. Inside the forests most plaquettes still have the value e;
however, there are some plaquettes that are different. There is a tube of plaquettes that have the
value [g, h], where the two forests intersect. In general, this group theoretical commutator is
not equal to the identity element for non-abelian groups. This is the physical reason behind the
appearance of zeros in the S-matrix for non-abelian theories. This tube of plaquettes represents
a flux [g, h] going from one loop to the other. In the trivial vacuum, this flux will be gapped, so
the contribution of this diagram to the path integral expectation value will be negligible.

However, a different situation appears when we are in a vacuum where the flux [g, h] has
Bose condensed. We cannot give a single configuration that contributes dominantly to the path
integral (there are many), but we can say that configurations like the one in figure 5 are now
contributing since the mass for the flux [g, h] has disappeared.
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Figure 5. The vacuum exchange contribution. Double h-forest configuration
contributing to the S-matrix measurement of two noncommuting fluxes. The fat
links are the g-forest and h-forest and the shaded plaquettes are a string of [g, h]
flux connecting the two loops.

Thus we expect that in the measurements there will be cases when zeros in the original
S-matrix will obtain a nonzero value in the broken phase.

An auxiliary A N gauge symmetry. The operators (33) are invariant with respect to the local
H gauge transformations (28). However, in our formulation of the operators we have tacitly
introduced another, auxiliary A N gauge symmetry that is less obvious. A crucial property that
allows one to determine the topological symmetry breaking pattern in detail is that the loop
operators do transform nontrivially under this symmetry. In a nontrivial ground state, these
symmetries may be broken and will therefore lead to the lifting of certain degeneracies related
to the splitting of fields in the topological symmetry breaking process. So this hidden symmetry
turns out to be a blessing in disguise.

Let us first note that there is no preferred choice for the coordinate system (24) we define
for the conjugacy classes. Once a certain choice {xhi } has been made such that hi = xhi h1x−1

hi
, a

set {x ′

hi
} with

x ′

hi
= xhi nhi , [nhi , hi ] = e (nhi ∈

A N ) (35)

will do just as well. In the trivial vacuum, the S-matrix is invariant with respect to this
transformation. This is most easily seen by looking at the algebraic expression (27), but it is
also confirmed by our measurements of (34).

This invariance can be understood on the operator level by multiplying out the
representation matrices of the centralizer in equation (33). Generally, this will lead to terms
of the form

Trα g̃ = Trα(x
−1
hk

gxhi ),

where g is the product of links on the loop and hk = g hi g−1, implying that indeed g̃ ∈
A N .

When the loop is linked with another loop, the element g will in general be in the conjugacy class
of the flux of this other loop. Under the transformation (35) of the conjugacy class coordinate
system, the above expression will transform as

Trα(n
−1
hk

x−1
hk

gxhi nhi )= Trα(nhi n
−1
hk

x−1
hk

gxhi ),

due to the cyclicity of the trace. This elucidates the invariance of the S-matrix in the trivial
vacuum under the translation of the xhi : noncommuting fluxes never have a nonzero matrix
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element, and if [g, h] = e, we have that hi = hk and therefore nhi n
−1
hk

= e. In a nontrivial ground
state where noncommuting fluxes may have nonzero S-matrix elements due to a vacuum
interchange contribution, the transformation (35) may manifest itself in different measured
matrix elements. This means that in such cases the entry (A, α) may split into multiple entries
{(Ai , αi)}. As we are interested in these multiple entries, we will in our calculations always
include the nontrivial behaviour of our observables under this auxiliary A N action. This turns
out to be one of the two mechanisms responsible for the splitting of irreps of A into multiple
irreps of U , the other of which we turn to now.

An auxiliary H/A N symmetry. There is another symmetry but now on the level of the fusion
algebra that turns out to be useful. Suppose in the theory there exists a rule of the form

(A, α)× (e, β)= (A, α), (36)

where (e, β) is some 1D purely electric representation. This turns out to be the case whenever
the representation 5(e,β)(·) evaluates to unity for all elements in A N , the normalizer of
conjugacy class A. We can prove this using the explicit expression for the fusion coefficients in
terms of the quantum double characters:

N (A,α)(B,β)
(C,γ ) =

1

|H |

∑
g,h

Tr
[
5(A,α)

⊗5(B,β) (1(Ph g))
]

Tr
[
5(C,γ ) (Ph g)

]∗
. (37)

Picking (B, β)= (e, β) and (C, γ )= (A, α),

N (A,α)(e,β)
(A,α) =

1

|H |

∑
g,h

Tr

[
5(A,α)

⊗5(e,β)

( ∑
h1h2=h

Ph1 g ⊗ Ph2 g

)]
· · ·

· · · Tr
[
5(A,α)(Ph g)

]∗
=

1

|H |

∑
g,h

Tr
[
5(A,α)(Ph g)⊗5(e,β)(Pe g)

]
Tr
[
5(A,α)(Ph g)

]∗
=

1

|H |

∑
g∈AN ,h∈A

Tr
[
5(A,α)(Ph g)

]
Tr
[
5(A,α)(Ph g)

]∗
= 1,

where in the latter line we have made use of the orthogonality of the characters. We assumed
that 5(e,β)(Pe g)= 1 for all g ∈

A N . The sum over h is restricted since if h 6∈ A the matrix
element will be zero and the sum over g is restricted since if g 6∈

A N the matrix element will be
off-diagonal and thus not contribute to the trace.

So we see that the fusion rule (36) leads to a degeneracy in the calculation of S-matrix
elements, since by definition

(A,α) (C,γ) 0

=

(C,γ)

(e,β)

(A,α)

0

.

However, on the operator level this equality does not hold. Indeed, when we probe the lhs of this
equation in a nontrivial vacuum, the result will in general differ from the rhs. In particular, it
turns out that the different U representations that lift to the same A representations (A, α) differ
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Table 1. Character table of the group D̄2 and of Z4 as a centralizer of the
conjugacy class X i .
D̄2 e e X1 X2 X3

1 1 1 1 1 1
J1 1 1 1 −1 −1
J2 1 1 −1 1 −1
J3 1 1 −1 −1 1
χ 2 −2 0 0 0

Z4 1 iσi −1 −iσi

00 1 1 1 1
01 1 i −1 −i
02 1 −1 1 −1
03 1 −i −1 i

precisely by such a fusion. So this degeneracy may be lifted in the broken phase and give rise
to additional splittings of certain entries (A, α). Consequently, in our numerical calculations
we have to explicitly keep track of the presence of such electric representations (e, β), which
satisfy (36), and see whether they give rise to additional splittings.

To conclude this section, we remark that we have very explicitly indicated how one gets
from the modular S-matrix Sab to the extended or broken S-matrix S̄ai b j , from which the
topological data of the broken U phase can be immediately read off.

3. The D( D̄2) gauge theory

We turn to the particular example we have chosen to work out in detail: a DGT with gauge
group D̄2, also called the quaternion group. The representation theory was worked out in [36];
here we summarize the results that are required to describe the breaking by a Bose condensate.

3.1. Algebraic analysis

The group D̄2 contains eight elements that can be represented by the set of 2 × 2-matrices

{1,−1,±iσ1,±iσ2,±iσ3}, (38)

where the σi , i = 1, 2, 3, are the Pauli spin matrices. We denote the conjugacy classes as
e = {1}, e = {−1}, X1 = {iσ1,−iσ1}, X2 = {iσ2,−iσ2}, X3 = {iσ3,−iσ3} and the irreducible
group representations as 1, the trivial irrep, J1, J2, J3 three 1D irreps and χ the 2D irrep given
by (38). The character table is given on the left-hand side of table 1.

The centralizer groups for the conjugacy classes e and e are both D̄2 since the elements in
these conjugacy classes constitute the centre of the group. The conjugacy classes X i , i = 1, 2, 3,
have nontrivial Z4 centralizer subgroups, of which the character table is given on the rhs of
table 1. The irreducible representations of the quantum double are labelled by a combination
(A, α) of a conjugacy class A and a centralizer irrep α. The full set of fusion rules for the D(D̄2)

theory is given in appendix. All in all, there are 22 sectors: the trivial flux paired with the five
irreps of D̄2, the e flux paired with the five irreps of D̄2 and the three X i fluxes paired with
the four Z4 irreps. The sectors that involve an X i flux or a χ irrep have quantum dimension 2;
the others have unit quantum dimension. One finds that the total quantum dimension for the
theory DA = 8.

Breaking: (e, 1) condensate. In this case, the lift of the new vacuum is φ = (e, 1) + (e, 1),
which implies that q = d(e,1) + d(ē,1) = 2. To determine the effective low-energy theory we
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fuse φ with all particle sectors of the theory and look for the irreducible combinations that
appear. As before, the notation (A, α) stands for a particle with magnetic flux A and electric
charge α.

φ× (e, 1)= (e, 1)+ (e, 1),

φ× (e, Ji)= (e, Ji)+ (e, Ji),

φ× (e, χ)= (e, χ)+ (e, χ) (∗),

φ× (e, 1)= (e, 1)+ (e, 1),

φ× (e, Ji)= (e, Ji)+ (e, Ji),

φ× (e, χ)= (e, χ)+ (e, χ) (∗),

φ× (X i , 0
0)= (X i , 0

0)+ (X i , 0
0),

φ× (X i , 0
1)= (X i , 0

1)+ (X i , 0
3) (∗),

φ× (X i , 0
2)= (X i , 0

2)+ (X i , 0
2),

φ× (X i , 0
3)= (X i , 0

1)+ (X i , 0
3) (∗).

The lines marked with (∗) have components on the right-hand side that carry different spin
factors, implying that they are confinement in the broken phase. Studying the fusion rules
of the surviving combinations of irreps leads to the conclusion that the effective U theory is
D(Z2 ⊗Z2). We denote the four different irreps and conjugacy classes of the group Z2 ⊗Z2

by the labels ++,+−,−+,−−, the first (second) symbol standing for the first (second) Z2.
This means that D2

T = 32 and D2
U = 16. The branchings of A irreps into the unconfined U

theory are

(e, 1)+ (e, 1)→ (++,++), d(++,++) = 1,

(e, J1)+ (e, J1)→ (++,+−), d(++,+−) = 1,

(e, J2)+ (e, J2)→ (++,−+), d(++,−+) = 1,

(e, J3)+ (e, J3)→ (++,−−), d(++,−−) = 1,

(X1, 0
0)1 → (−+,++), d(−+,++) = 1,

(X1, 0
0)2 → (−+,+−), d(−+,+−) = 1,

(X1, 0
2)1 → (−+,−+), d(−+,−+) = 1,

(X1, 0
2)2 → (−+,−−), d(−+,−−) = 1,

(X2, 0
0)1 → (+−,++), d(+−,++) = 1,

(X2, 0
0)2 → (+−,−+), d(+−,−+) = 1,

(X2, 0
2)1 → (+−,+−), d(+−,+−) = 1,

(X2, 0
2)2 → (+−,−−), d(+−,−−) = 1,

(X3, 0
0)1 → (−−,++), d(−−,++) = 1,

(X3, 0
0)2 → (−−,−−), d(−−,−−) = 1,

(X3, 0
2)1 → (−−,+−), d(−−,+−) = 1,

(X3, 0
2)2 → (−−,−+), d(−−,−+) = 1,
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which all have quantum dimension du = 1, while the confined fields are

(e, χ)+ (e, χ)→ t1, dt1 = 2,

(X1, 0
1)+ (X1, 0

3)→ t2, dt2 = 2,

(X2, 0
1)+ (X2, 0

3)→ t3, dt3 = 2,

(X3, 0
1)+ (X3, 0

3)→ t4, dt4 = 2

and have dt = 2.

Breaking: (X1, 0
0) condensate There is an obvious symmetry in the fusion rules between the

three (X i , 0
0) particle sectors. We choose to study the case when the (X1, 0

0) condenses. This
gives for the new vacuum φ = (e, 1) + (e, 1) + (X1, 0

0), from which it follows that q = 4 in this
case. We now read off the lifts of the T fields on the right:

φ× (e, 1)= (e, 1)+ (e, 1)+ (X1, 0
0),

φ× (e, Ji)= (e, Ji)+ (e, Ji)+ δ1i(X1, 0
0)+ η1i(X1, 0

2),

φ× (e, χ)= (e, χ)+ (e, χ)+ (X1, 0
1)+ (X1, 0

3),

φ× (e, 1)= (e, 1)+ (e, 1)+ (X1, 0
0),

φ× (e, Ji)= (e, Ji)+ (e, Ji)+ δ1i(X1, 0
0)+ η1i(X1, 0

2),

φ× (e, χ)= (e, χ)+ (e, χ)+ (X1, 0
1)+ (X1, 0

3),

φ× (X1, 0
0)= (X1, 0

0)+ (X1, 0
0)+ (e, 1)+ (e, 1)+ (e, J1)+ (e, J1),

φ× (X1, 0
1)= (X1, 0

1)+ (X1, 0
3)+ (e, χ)+ (e, χ),

φ× (X1, 0
2)= (X1, 0

2)+ (X1, 0
2)+ (e, J2)+ (e, J2)+ (e, J3)+ (e, J3),

φ× (X1, 0
3)= (X1, 0

1)+ (X1, 0
3)+ (e, χ)+ (e, χ),

φ× (X i , 0
0)= (X i , 0

0)+ (X i , 0
0)+ (Xk, 0

0)+ (Xk, 0
2) (i 6= k 6= 1),

φ× (X i , 0
1)= (X i , 0

1)+ (X i , 0
3)+ (Xk, 0

1)+ (Xk, 0
3),

φ× (X i , 0
2)= (X i , 0

2)+ (X i , 0
2)+ (Xk, 0

0)+ (Xk, 0
2),

φ× (X i , 0
3)= (X i , 0

1)+ (X i , 0
3)+ (Xk, 0

1)+ (Xk, 0
3).

We have used the symbol δi j that is 1 when i and j are equal and is zero otherwise and ηi j

that is 1 when i and j are not equal and is zero when i and j are equal. The U theory is
D(Z2)' Z2 ⊗Z2. This means that D2

T = 16 and D2
U = 4. The lifts of the unconfined fields are

(e, 1)+ (e, 1)+ (X1, 0
0)1 → (+,+), d(+,+) = 1,

(e, J1)+ (e, J1)+ (X1, 0
0)2 → (+,−), d(+,−) = 1,

(X2, 0
0)1 + (X3, 0

0)1 → (−,+), d(−,+) = 1,

(X2, 0
2)1 + (X3, 0

2)1 → (−,−), d(−,−) = 1

and of the confined fields

(e, J2)+ (e, J2)+ (X1, 0
2)1 → t1, dt1 = 1,

(e, J3)+ (e, J3)+ (X1, 0
2)2 → t2, dt2 = 1,

New Journal of Physics 14 (2012) 035024 (http://www.njp.org/)

http://www.njp.org/


28

(e, χ)+ (e, χ)+ (X1, 0
1)+ (X1, 0

3)→ t3, dt3 = 2,

(X2, 0
0)2 + (X3, 0

2)2 → t4, dt4 = 1,

(X3, 0
0)2 + (X2, 0

2)2 → t5, dt5 = 1,

(X2, 0
1)+ (X2, 0

3)+ (X3, 0
1)+ (X3, 0

3)→ t6, dt6 = 2.

3.2. Measurements by lattice Monte Carlo simulations

The five couplings {βA} for conjugacy class A that appear in the action of the D(D̄2) theory

Sp =

∑
p

−
{
βeδe(Up)+βeδe(Up)+βX1δX1(Up)+βX2δX2(Up)+βX3δX3(Up)

}
(39)

are inversely proportional to the masses of the fluxes A. For example if we put all couplings to
zero except for βe, which we make large (at least as large as 2.0 as we will see shortly), the trivial
vacuum is realized: this is the configuration where for all plaquettes Up = e. Deviations from
this configuration occur because of quantum fluctuations, but since all excitations are gapped
they will be exponentially suppressed. The gap in this vacuum is easily calculated to be of the
order of 4βe, since the smallest excitation above the configuration in which all plaquettes are
e is the one in which one link has a value h 6= e. This excites four plaquettes and changes the
action (39) by a value of 4βe.

MC considerations. For the other, nontrivial phases in this theory, the dominant configurations
contributing to the path integral are not so readily identified. To gain insight into what
configurations contribute we use an MC simulation, in particular a modified heat bath algorithm.
Bluntly applying this algorithm to our problem leads to various complications; therefore we
briefly point out the method, the complications and how we have resolved them.

The procedure starts with some initial configuration of link variables {U }1. We then update
all links in lexicographic order, a process called a sweep, and arrive at a new configuration
{U }2. The updating process for each link proceeds as follows. Consider the link Ui j . We identify
which plaquettes contain this link: in three dimensions, there are four such plaquettes. Now we
calculate, for each element g ∈ H , what the sum of the plaquette actions for each of these four
plaquettes would be if Ui j were to have the value g. This gives a set of numbers

{Sg1, Sg2, . . . , Sg|H |
},

where Sgk is the sum of the four plaquette actions with Ui j equal to gk . We now calculate a
localized partition sum ZUi j :

ZUi j =

∑
g∈H

e−Sg ,

which can be used to calculate a set of probabilities {p(g)}g∈H for each group element g

p(g)=
e−Sg

ZUi j

.

After a given number of sweeps n0, the MC algorithm arrives at the minimum of the action and
the path integral expectation value of the operator O

〈O〉 =

∫
DU O[U ] e−S[U ]∫

DU e−S[U ]
(40)
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minimum without operator
insertion

minimum with operator
insertion

Figure 6. Schematic drawing of the action as a functional of the gauge field
configuration {U }. The insertion of noncommuting fluxes shifts the minimum of
the action to a different location in the configuration space (due to the nonlocal
nature of the excitations) and to a different value (due to the presence of a string).

is given by taking the average of O[{U }n], the value of O at gauge field configuration {U }n:

〈O〉MC estimate =
1

m

n0+m∑
n=n0+1

O[{U }n]. (41)

However, for our purposes this scheme is troublesome for two reasons: it is tacitly assumed
that the presence of the operator O in (40) does not change the value of the minimum of the
action S and furthermore the loops of magnetic flux are very nonlocal objects and therefore
highly unlikely to appear when using a local updating algorithm. This is illustrated in figure 6.
The shift upward of the functional S[U ] is due to the presence of a magnetic flux string and the
shift to the left is due to the nonlocality of the magnetic excitations. The latter shift also occurs
when a single loop of flux is inserted.

The minimum of the action in the calculation of an S-matrix element (34) is altered by the
insertions of the loop operators: the configuration for two noncommuting fluxes carries a string
(see the discussion around figure 5) that is massive and thus costs a finite amount of action.
There is no way to get rid of this string and therefore the minimum value of the action in the
presence of the two loops is shifted. We therefore have to amend the standard MC algorithm.
Defining

S = Smin + δS, without operator insertion,

S̃ = S̃min + δ S̃, with operator insertion,

and noting that around the minimum the actions behave identically, implying that δS and δ S̃ are
the same functions, expression (40) becomes

〈O〉 =

∫
DU e−(S̃min−Smin)O[U ] e−δS[U ]∫

DU e−δS[U ]
. (42)

This leads to a modified MC average

〈O〉MC estimate =
1

m
e−(S̃min−Smin)

n0+m∑
n=n0+1

O[{U }n]. (43)

New Journal of Physics 14 (2012) 035024 (http://www.njp.org/)

http://www.njp.org/


30

Figure 7. Growing a flux loop in multiple steps. The shaded plaquettes have a
twisted action, and the fat links show convergence towards an h-forest state.

We now describe two approaches to the second problem in our MC measurements: the
low probability that the local updating algorithm will converge to a gauge field configuration
containing a (set of) magnetic flux loop(s). We will assume that a single loop of pure magnetic
flux is inserted, as nothing substantial will change in the case of multiple loops or the addition
of dyonic charge.

The first approach is based on the observation, illustrated in figure 4, that we know the
gauge field configuration (up to gauge transformations) that extremizes the action in the trivial
vacuum with the insertion of a loop of magnetic flux: the h-forest. We can therefore use this
configuration as an ansatz in the MC algorithm. We start with a ‘cold lattice’, all links Ui j = e,
except for the h-forest—for these links we set Ui j = h. This is an extremum of the action for
the action if we set all βA 6=e = 0 and βe � 1. To carry out a measurement at some other value of
the coupling constants, we can slowly change the coupling constants towards the desired values,
performing a few MC updates after each step.

The second approach is a more physical one. We initialize the lattice directly at the desired
point in the coupling constant space. The trick then is not to insert the loop all at once, but
to slowly grow it, as illustrated in figure 7. We start by twisting the action for four plaquettes
around one link, as shown by the shaded plaquettes in the top left of figure 7. After this, a
number of MC updates are performed. Then the set of plaquettes that have a twisted action is
changed as in the top right corner of the figure. Again a number of MC updates are performed
and so on. We have checked that in the trivial vacuum one obtains the h-forest configuration
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Figure 8. Plots of the free energy F for 2D planes through the origin of the
parameter space of the lattice model. In the left figure we have the (βe, βē) plane
and in the right figure we have the (βe = βX1, βē) plane. See text for further
comments.

using this procedure. Both of the methods to insert flux loops have been used by us and we have
verified that they lead to completely equivalent results.

3.3. Results

In this subsection we present the results of our MC simulations. The first quantity we measured
was the free energy as a means of mapping out a suitable subspace of the parameter space. It
gives us an indication of the validity of our naive intuition about where nontrivial condensates
should occur.

Once we have found some region where symmetry breaking occurs, we measure the
open string expectation values to determine the respective condensates. After that we measure
the unbroken and broken S-matrix elements. Using the straightforward algorithm involving
the auxiliary symmetries of our loop operators discussed in section 2.3 allows us to find
the branching matrix na1

u as well as the S-matrix of the effective U theory in the broken phase.

Mapping out the phase diagram. The space of coupling constants in our theory is five
dimensional but it is not our goal to analyse it completely. We have restricted our search to some
representative regions where nontrivial condensates do indeed occur. To study the location of
the corresponding phase transitions we measured the free energy F , which we define as the
expectation value of the plaquette action, averaged over the spacetime lattice.

The left plot of figure 8 shows F as a function of (βe and βē) and all other couplings
are equal to zero. For small values of all the couplings appearing in the action (39), we are
in the completely confining phase of the gauge theory, where all the open string operators of
magnetic flux have a nonzero expectation value, and all loop operators carrying electric charge
are confined. This corresponds to the plateau in the graph where F is maximal and tends to zero.

The regions where the magnetic flux (e, 1) and (X1, 0
0) have condensed can be anticipated

on theoretical grounds by realizing that the coupling βA is inversely proportional to the
mass of flux A. In fact, when we look at the subgroup K A generated by the elements in
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conjugacy class A, in particular

Ke = {1,−1},

K X1 = {1,−1, iσ1,−iσ1},

and set the couplings for the conjugacy classes containing the elements in K A equal to one
another, there is an extra gauge invariance Up → k Up for an element k ∈ A in the plaquette
action (39). In particular

S = β
(
δe(Up)+ δe(Up)

)
is invariant with respect to Up → −1Up and

S = β
(
δe(Up)+ δe(Up)+ δX1(Up)

)
is invariant with respect to Up → k Up, where k ∈ {−1, iσ1,−iσ1}.

These left multiplications are exactly the kind appearing in the definition of the (loop) order
parameters (33). Therefore, one can establish, even without reverting to MC measurements, that
the above actions, for large values of β, produce the desired flux condensates.

One may verify this reasoning in figures 9 and 10 where we have probed the phase
diagram in more detail by measuring the spacetime averaged expectation value of δA(Up) for
all conjugacy classes A as a function of the relevant coupling parameters β. The red colour
indicates high values for the expectation value and we see that for all coupling parameters near
zero all fluxes are condensed and thus all charges will be confined. This is what is traditionally
called the ‘strong coupling’ phase (g ∼ 1/β � 1). Looking at the colourings for the various
operators, one readily identifies the various phases as indicated in the schematics of subfigures
(f). For example the symmetry with respect to the diagonal of figures 9(a) and (b) shows that
there are ‘Ising’-like ordered phases, one with all plaquette values Up = e and the other with all
Up = ē. The in between region is the region with the ē flux condensate. Note that if the ē flux
would be the only one that phase would continue all the way to the origin, and we would exactly
end up with the Z2 pure gauge theory phase diagram.

In the region with βe larger than approximately 2.0 and all other couplings near zero,
the trivial vacuum is realized. All string operators with nontrivial magnetic flux have zero
expectation value there.

As pointed out in previous sections for example in relation (12), there is a very direct way
to determine the condensate as well as the quantum embedding index q. This is by measuring
the expectation value of the open string for each pure flux A and then summing over all fluxes.
In the (e, 1) vacuum we obtain

(e,1)
Φ

= (e,1)
Φ

= 1.0,

so q = 2, whereas in the (X1, 0
0) vacuum,

(e,1)
Φ

= (e,1)
Φ

= 1.0, (X1,Γ0)
Φ

= 2.0,

so in this case q = 4. In figure 11 we show the measurement of the vacuum expectation value
for the (e, 1) open string as a function of the coupling constant βē, which demonstrates that such
measurements clearly indicate where the transition takes place.
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(a) 〈δe(Up)〉 (b) 〈δe(Up)〉 (c) 〈δX1(Up)〉

(d) 〈δX2(Up)〉 (e) 〈δX3(Up)〉 (f) Schematic of diagram

Figure 9. Spacetime averaged expectation value of δA(Up) for each conjugacy
class A. Shown is a (βe, βe)-plane in coupling constant space where the other
three couplings are zero. The colour coding is such that red is the highest and
blue the lowest value in each figure. In (f) we have identified the meaning
of the various regions and the transition lines, where red arrows indicate
the trajectories used to determine whether the transitions are first or second
order (see figures 12(f) and 13(f)). (a) 〈δe(Up)〉, (b) 〈δe(Up)〉, (c) 〈δX1(Up)〉,
(d) 〈δX2(Up)〉, (e) 〈δX3(Up)〉 and (f) schematic diagram.

There is one more issue we like to address in our simulations, i.e. to determine the order of
the transitions we have identified. A conventional approach is to search for a hysteresis effect
across a first-order transition, but because of the relatively modest size of the lattices used this is
not an optimal approach. A method that is working much better is to directly probe the system
at a given sequence of coupling constants around the transition and to see whether there is a
coexistence region where both phases occur in the sampling8. To make these measurements
we use the parallel tempering method [39] to overcome local minima in the action landscape.
The idea behind this method is to initialize a range of lattices simultaneously, all at different
couplings along a trajectory in coupling constant space starting in phase 1 and ending in phase 2.
The updates of this ensemble then consist of the updates of each of the individual lattices and,

8 We would like to thank Simon Trebst for pointing this out to us.
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(a) 〈δe(Up)〉 (b) 〈δe(Up)〉 (c) 〈δX1(Up)〉

(d) 〈δX2(Up)〉 (e) 〈δX3(Up)〉 (f) Schematic of diagram

Figure 10. Spacetime averaged expectation value of δA(Up) for each conjugacy
class A. Shown is a (βe, βe = βX1)-plane in coupling constant space where the
other two couplings are zero. The colour coding is such that red is the highest
and blue the lowest value in each figure. In (f) we have identified the meaning
of the various regions and the transition lines, where the red arrow indicates the
trajectory used to determine whether the transition is first or second order (see
figure 12(f)). (a) 〈δe(Up)〉, (b) 〈δe(Up)〉, (c) 〈δX1(Up)〉, (d) 〈δX2(Up)〉, (e) 〈δX3(Up)〉

and (f) schematic diagram.

occasionally, a swap of two adjacent lattices. The swap between lattices 1 and 2 is accepted with
a probability

p(1 ↔ 2)= min

{
1,

exp (S1(1)+ S2(2))
exp (S2(1)+ S1(2))

}
,

where S1(2) means using the action (in particular, the set of couplings) of lattice 1 to evaluate
the field configuration of lattice 2 and so on. One can prove that this satisfies detailed balance.
In effect, each lattice will perform a random walk through coupling constant space along the
chosen trajectory, allowing a ‘cold’ lattice to thermalize in the ‘high-temperature’ region, thus
overcoming the local minima of the action.

We have made measurements for the trajectories indicated by the arrows in figures 9(f)
and 10(f). The results of these measurements for the horizontal arrow are given in figure 12 and
those for the vertical arrow in figure 13. We find that in the horizontal trajectory the transition
from the strongly coupled phase corresponding to the left peak in figure 12 to the trivial phase

New Journal of Physics 14 (2012) 035024 (http://www.njp.org/)

http://www.njp.org/


35

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5

〈Δ
(e
,1
) 〉

βe

Figure 11. Vacuum expectation value of the (e, 1) open string as a function of the
coupling constant βē, showing that the nonlocal open string operators are good
order parameters to characterize topological phase transitions. Length of the
string: 4 plaquettes; measurements on a 163 lattice; βe = 3.0 and other couplings
are zero.

corresponding to the right peak indeed goes through a coexistence region corresponding to the
values of the coupling parameter where both peaks are present as in figures 12(b) and (c).

The result for the vertical trajectory corresponding to the transition from the trivial phase to
the broken (X1, 00) phase is given in figure 13, where we see that the peak shifts continuously,
implying that the transition is second order. We can understand this transition as follows. In this
region of coupling constant space, all fluxes except the e flux are very heavy. This means that the
ground state is essentially that of a Z2 gauge theory. Since Z2 gauge theory in three dimensions
is the Kramers–Wannier dual to the 3D Ising model, it has the same phase structure [34]. We
therefore expect this phase transition to lie in the same universality class.

Measuring the (broken) modular S-matrices. We have measured the (broken) S-matrix
elements using the simple algorithm involving the auxiliary symmetries of our loop operators.
This allows us to obtain the unbroken S-matrix as well as the branching matrix na1

u and the
S-matrix of the effective U theory in the various broken phases. Here we exploit the relation (27)
for the measurement, and the relation (18):

Suv =
1

q

∑
ai ,b j

nai
u nb j

v

〈
Sai b j

〉
8
,

relating Suv to the measured S-matrix in the broken phase. We first measured the unbroken
S-matrix in the D(D̄2) phase and obtain results identical to the matrix calculated using the
defining formula (6); the result is given in table 2 and is of course consistent with the matrix
obtained from the relation (18) with 8= 0. The accuracy of the measured matrix elements
represented in the table as integers is smaller than 5%.

The branching matrices na
u can be obtained from measuring the broken S-matrices. The

columns in these matrices correspond to the different U sectors. If we see two rows or columns
with different parents a, b in the A theory that are proportional to each other, a and b branch to
the same U sector u. Conversely, if different u fields correspond to the same a field that means
that the a splits in the broken phase. We have listed the results for the broken S-matrix in the
(e, 1) vacuum in table 3.
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(a) βe = 1.906
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(b) βe = 1.916
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(c) βe = 1.926
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(d) βe = 1.936

Figure 12. The sequence of plots is across the transition from the strongly
coupled phase with all fluxes condensed and all charges confined, to the
trivial phase. This trajectory corresponds to the horizontal arrow in figures 9(f)
and 10(f), where 1.9066 βe 6 1.936 and all other couplings are equal to zero.
Plotted along the x-axis is the average expectation value of the percentage of
trivial plaquettes with Up = e and along the y-axis we plot the number of times
that that percentage is measured in a simulation of 4000 runs on a 103 lattice.
The figures clearly show a shift from the peak on the left to that on the right,
with a double peak in between; this is the signature of the region where both
phases coexist, i.e. of a first-order transition. (a) βe = 1.906, (b) βe = 1.916,
(c) βe = 1.926 and (d) βe = 1.936. (a) βē = 1.42, (b) βē = 1.52, (c) βē = 1.62
and (d) βē = 1.72.

To realize the splittings between the irreducible representations using the auxiliary gauge
symmetries alluded to in section 2.3, we found the following construction to suffice.
(e, 1) vacuum
• (X i , 0

0)1 is realized by the operator 1(X i ,0
0).

• (X i , 0
0)2 is realized by the operators 1(X i ,0

0)1(e,Ji ).
• (X1, 0

2)1 is realized by the operator 1(X1,0
2) with {xiσ1 = e, x−iσ1 = iσ2}.

• (X1, 0
2)2 is realized by the operators 1(X1,0

2)1(e,J1) with {xiσ1 = e, x−iσ1 = iσ2}.

• (X2, 0
2)1 is realized by the operator 1(X2,0

2) with {xiσ2 = e, x−iσ2 = iσ1}.

• (X2, 0
2)2 is realized by the operators 1(X2,0

2)1(e,J2) with {xiσ2 = e, x−iσ2 = iσ1}.

• (X3, 0
2)1 is realized by the operator 1(X3,0

2) with {xiσ3 = e, x−iσ3 = iσ1}.

• (X3, 0
2)2 is realized by the operators 1(X3,0

2)1(e,J3) with {xiσ3 = e, x−iσ3 = iσ1}.
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(a) βē = 1.42
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(b) βē = 1.52
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(c) βē = 1.62
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(d) βē = 1.72

Figure 13. The sequence of plots is across the transition from the trivial phase
to the phase with the ē condensate; the trajectory corresponds to the vertical
arrow in figure 9(f), where 1.426 βē 6 1.72, βe = 3.0 and all other couplings
are equal to zero. Plotted along the x-axis is the average expectation value of
the percentage of trivial plaquettes with Up = e and along the y-axis we plot the
number of times that that percentage is measured in a simulation of 4000 runs
on a 103 lattice. The figures feature only a single peak that smoothly moves from
one phase to the other, indicating a smooth second-order transition, presumably
corresponding to the 3D Ising model transition. (a) βē = 1.42, (b) βē = 1.52, (c)
βē = 1.62 and (d) βē = 1.72.

(X1, 0
0) vacuum

• (X i , 0
0)1 is realized by the operator 1(X i ,0

0).

• (X1, 0
0)2 is realized by the operators 1(X1,0

0)1(e,J1).

• (X2, 0
2)1 is realized by the operator 1(X2,0

2) with {xiσ2 = e, x−iσ2 = iσ1}.

• (X3, 0
2)1 is realized by the operator 1(X3,0

2) with {xiσ3 = e, x−iσ3 = iσ1}.

We see that in table 3 the columns (rows) for the sectors (e, α) and (e, α) for α = 1,
J1, J2, J3 are identical and thus that the corresponding fields have to be identified. This leaves
us with 16 sectors for the broken U theory. Summing the entries as prescribed by formula (3.3)
yields exactly the S-matrix of the D(Z2 ⊗Z2) theory, which is given in table 4.
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Table 5. The broken S-matrix for the D(D̄2) theory as measured in the (X1, 0
0)

vacuum.

(e, 1) (e, J1) (e, 1) (e, J1) (X1, 0
0)1 (X1, 0

0)2 (X2, 0
0)1 (X2, 0

2)1 (X3, 0
0)1 (X3, 0

2)1

(e, 1) 1 1 1 1 2 2 2 2 2 2
(e, J1) 1 1 1 1 2 2 −2 −2 −2 −2
(e, 1) 1 1 1 1 2 2 2 2 2 2
(e, J1) 1 1 1 1 2 2 −2 −2 −2 −2
(X1, 0

0)1 2 2 2 2 4 4 4 4 4 4
(X1, 0

0)2 2 2 2 2 4 4 −4 −4 −4 −4
(X2, 0

0)1 2 −2 2 −2 4 −4 4 −4 4 −4
(X2, 0

2)1 2 −2 2 −2 4 −4 −4 4 −4 4
(X3, 0

0)1 2 −2 2 −2 4 −4 4 −4 4 −4
(X3, 0

2)1 2 −2 2 −2 4 −4 −4 4 −4 4

Table 6. The modular S-matrix for the D(Z2) theory (up to the normalization
factor 1/DU = 1/2).

U D(Z2) (e, 1) (e, J1) (X2, 0
0)1 (X2, 0

2)1

(e, 1) (+,+) 1 1 1 1
(e, J1) (+,−) 1 1 −1 −1
(X2, 0

0)1 (−,+) 1 −1 1 −1
(X2, 0

2)1 (−,−) 1 −1 −1 1

In table 5 we have listed the result for the broken S-matrix in the (X1, 0
0) vacuum. Here we

have to identify the sectors (e, 1), (e, 1) and (X1, 0
0)1, the sectors (e, J1), (e, J1) and (X1, 0

0)2,
the sectors (X2, 0

0)1 and (X3, 0
0)1 and the sectors (X2, 0

2)1 and (X3, 0
2)1. These results are

all fully consistent with the algebraic analysis presented in section 3.1.
Let us illustrate the method by calculating a few sample S-matrix elements in the (X1, 0

0)

condensed vacuum. The U theory should be D(Z2); let us first calculate the S(+,+)(+,+) element,
the (+,+) sector being the new vacuum

S(+,+)(+,+) =
1

q

{ 〈
S(e,1)(e,1)

〉
8

+
〈
S(e,1)(e,1)

〉
8

+
〈
S(e,1)(X1,00)

〉
8

+
〈
S(e,1)(e,1)

〉
8

+
〈
S(e,1)(e,1)

〉
8

+
〈
S(e,1)(X1,00)

〉
8

+
〈
S(X1,00)(e,1)

〉
8

+
〈
S(X1,00)(e,1)

〉
8

+
〈
S(X1,00)(X1,00)

〉
8

}
=

1

4

1

8
(1 + 1 + 2 + 1 + 1 + 2 + 2 + 2 + 4)=

1

2
,

in agreement with table 6. The contributions to the above matrix element would be equal if we
had used the S-matrix elements as measured in the trivial vacuum.

New Journal of Physics 14 (2012) 035024 (http://www.njp.org/)

http://www.njp.org/


42

To appreciate the importance of the measurements in the broken vacuum, consider the
matrix element S(−,+)(−,−). The parents of the (−,+) sector are (X2, 0

0)1 and (X3, 0
0)1 and

those of the (−,−) sector are (X2, 0
2)1 and (X3, 0

2)1.

S(−,+)(−,−) =
1

q

{ 〈
S(X2,00)1(X2,02)1

〉
8

+
〈
S(X2,00)1(X3,02)1

〉
8

+
〈
S(X3,00)1(X2,02)1

〉
8

+
〈
S(X3,00)1(X3,02)1

〉
8

}
=

1

4

1

8
((−4)+ (−4)+ (−4)+ (−4))= −

1

2
.

We see that after completing the calculation along this line, we obtain the S-matrix of the D(Z)
theory, as given in table 6. Note that if we had used the S-matrix of the unbroken theory, the
S(X2,00)(X3,02) and S(X3,00)(X2,02) would have been zero.

4. Conclusions and outlook

In this paper, we have studied euclidean lattice models for discrete gauge theories. We have
introduced a set of multiparameter actions for these theories that display a rich phase structure,
and showed in particular that all the allowed condensates of pure magnetic flux are realized
in certain well-anticipated regions of coupling constant space. The set of open string operators
that we defined form a set of order parameters that allowed us to determine the content of the
condensate and to measure the topological symmetry breaking index q.

Once the condensate is identified, we have shown how to unambiguously reconstruct the
S-matrix of the low-energy theory in a broken or unbroken phase by measurements of the
complete set of braided loop operators, using the anyonic loop operators we proposed in the
earlier work [16]. Due to an auxiliary gauge symmetry these operators are particularly well
suited for detecting the nontrivial splittings of fields that correspond to fixed points under
fusion with the condensate. We found that as expected the excitations that are confined in
a broken vacuum give rise to rows and columns of zeros in the broken S-matrix. Our work
clearly demonstrates that the euclidean approach allows for a very straightforward method to
completely determine the nature of the broken phase.

Our work showed that the reason why the modular S-matrix changes in the broken phase is
largely due to the contribution of the so-called vacuum exchange diagram. In an upcoming more
theoretical paper [29], we will extend the approach used in this work, the use of observables and
in particular the S-matrix to determine the phase structure of a TQFT to a far wider range of
theories, in particular the SU(N )k TQFT arising from the Chern–Simons actions.

It would be interesting to study different models exhibiting different topological phases
by somehow formulating them in the euclidean 3D framework; to our knowledge such an
approach is unfortunately not yet available for the Chern–Simons theories. One expects that for
the Levin–Wen models [40] our approach could be implemented however. Another path is to
investigate the phase structure after adding dynamical matter fields that transform nontrivially.
It is known that in such situations the Wilson-type criteria break down as the strings can break;
this necessitates the development of different diagnostic tools [35, 41].
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discussions. JCR is financially supported by a grant from FOM.

Appendix. Fusion rules for D̄2 DGT

(e, Ji)× (e, Ji)= (e, 1),

(e, Ji)× (e, J j)= (e, Jk),

(e, Ji)× (e, χ)= (e, χ),

(e, χ)× (e, χ)= (e, 1)+
∑

(e, Ji),

(e, 1)× (e, Ji)= (e, Ji),

(e, 1)× (e, χ)= (e, χ),

(e, Ji)× (X i , 0
0,2)= (X i , 0

0,2),

(e, Ji)× (X j , 0
0,2)= (X j , 0

2,0),

(e, χ)× (X i , 0
0)= (X i , 0

1)+ (X i , 0
3),

(e, 1)× (e, 1)= (e, 1)

(e, 1)× (X i , 0
0,2)= (X i , 0

0,2),

(e, 1)× (X i , 0
1,3)= (X i , 0

3,1),

(e, Ji)× (X i , 0
1,3)= (X i , 0

1,3),

(e, Ji)× (X j , 0
1,3)= (X j , 0

3,1),

(e, χ)× (X i , 0
1,3)= (X i , 0

0)+ (X i , 0
2),

(X i , 0
0,2)× (X i , 0

0,2)= (e, 1)+ (e, 1)+ (e, Ji)+ (e, Ji),

(X i , 0
0)× (X i , 0

2)= (e, J j)+ (e, J j)+ (e, Jk)+ (e, Jk),

(X i , 0
0,2)× (X j , 0

0,2)= (X i , 0
2,0)× (X j , 0

0,2)= (Xk, 0
0)+ (Xk, 0

2),

(X i , 0
0,2)× (X i , 0

1,3)= (X i , 0
2,0)× (X i , 0

1,3)= (e, χ)+ (e, χ),

(X i , 0
0,2)× (X j , 0

1,3)= (X i , 0
2,0)× (X j , 0

1,3)= (Xk, 0
1)+ (Xk, 0

3),

(X i , 0
1,3)× (X i , 0

1,3)= (e, 1)+ (e, Ji)+ (e, J j)+ (e, Jk),

(X i , 0
1)× (X i , 0

3)= (e, 1)+ (e, Ji)+ (e, J j)+ (e, Jk),

(X i , 0
1,3)× (X j , 0

1,3)= (X i , 0
3,1)× (X j , 0

1,3)= (Xk, 0
0)+ (Xk, 0

2).
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