898 research outputs found

    Exposure of Vascular Smooth Muscle Cells for Analysis with the Scanning Electron Microscope

    Get PDF
    There has been interest in using the scanning electron microscope (SEM) to study the structure of tissues obscured by other cellular or non-cellular elements almost since the SEM was first used to examine biological tissues. Such interest includes the vessel wall and, in particular, the vascular smooth muscle cells. This paper presents a review of the three basic methodologies that have been employed to allow examination of the vascular smooth muscle, 1) blunt dissection, 2) digestion and 3) microdissection. Discussion of other perivascular elements was not a focus of this review. Also presented is the application of these different methodologies to different pathophysiologic conditions

    FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy

    Get PDF
    Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8mm) carbon targe

    A perpetual switching system in pulmonary capillaries

    Get PDF
    Of the 300 billion capillaries in the human lung, a small fraction meet normal oxygen requirements at rest, with the remainder forming a large reserve. The maximum oxygen demands of the acute stress response require that the reserve capillaries are rapidly recruited. To remain primed for emergencies, the normal cardiac output must be parceled throughout the capillary bed to maintain low opening pressures. The flow-distributing system requires complex switching. Because the pulmonary microcirculation contains contractile machinery, one hypothesis posits an active switching system. The opposing hypothesis is based on passive switching that requires no regulation. Both hypotheses were tested ex vivo in canine lung lobes. The lobes were perfused first with autologous blood, and capillary switching patterns were recorded by videomicroscopy. Next, the vasculature of the lobes was saline flushed, fixed by glutaraldehyde perfusion, flushed again, and then reperfused with the original, unfixed blood. Flow patterns through the same capillaries were recorded again. The 16-min-long videos were divided into 4-s increments. Each capillary segment was recorded as being perfused if at least one red blood cell crossed the entire segment. Otherwise it was recorded as unperfused. These binary measurements were made manually for each segment during every 4 s throughout the 16-min recordings of the fresh and fixed capillaries (>60,000 measurements). Unexpectedly, the switching patterns did not change after fixation. We conclude that the pulmonary capillaries can remain primed for emergencies without requiring regulation: no detectors, no feedback loops, and no effectors-a rare system in biology. NEW & NOTEWORTHY The fluctuating flow patterns of red blood cells within the pulmonary capillary networks have been assumed to be actively controlled within the pulmonary microcirculation. Here we show that the capillary flow switching patterns in the same network are the same whether the lungs are fresh or fixed. This unexpected observation can be successfully explained by a new model of pulmonary capillary flow based on chaos theory and fractal mathematics

    Three-body Faddeev Calculation for 11Li with Separable Potentials

    Get PDF
    The halo nucleus 11^{11}Li is treated as a three-body system consisting of an inert core of 9^{9}Li plus two valence neutrons. The Faddeev equations are solved using separable potentials to describe the two-body interactions, corresponding in the n-9^{9}Li subsystem to a p1/2_{1/2} resonance plus a virtual s-wave state. The experimental 11^{11}Li energy is taken as input and the 9^{9}Li transverse momentum distribution in 11^{11}Li is studied.Comment: 6 pages, RevTeX, 1 figur

    Hartree Fock Calculations in the Density Matrix Expansion Approach

    Get PDF
    The density matrix expansion is used to derive a local energy density functional for finite range interactions with a realistic meson exchange structure. Exchange contributions are treated in a local momentum approximation. A generalized Slater approximation is used for the density matrix where an effective local Fermi momentum is chosen such that the next to leading order off-diagonal term is canceled. Hartree-Fock equations are derived incorporating the momentum structure of the underlying finite range interaction. For applications a density dependent effective interaction is determined from a G-matrix which is renormalized such that the saturation properties of symmetric nuclear matter are reproduced. Intending applications to systems far off stability special attention is paid to the low density regime and asymmetric nuclear matter. Results are compared to predictions obtained from Skyrme interactions. The ground state properties of stable nuclei are well reproduced without further adjustments of parameters. The potential of the approach is further exemplified in calculations for A=100...140 tin isotopes. Rather extended neutron skins are found beyond 130Sn corresponding to solid layers of neutron matter surrounding a core of normal composition.Comment: Revtex, 29 pages including 14 eps figures, using epsfig.st

    Particle-unstable nuclei in the Hartree-Fock theory

    Get PDF
    Ground state energies and decay widths of particle unstable nuclei are calculated within the Hartree-Fock approximation by performing a complex scaling of the many-body Hamiltonian. Through this transformation, the wave functions of the resonant states become square integrable. The method is implemented with Skyrme effective interactions. Several Skyrme parametrizations are tested on four unstable nuclei: 10He, 12O, 26O and 28O.Comment: 5 pages, LaTeX, submitted to Phys. Rev. Let

    Clusters in Light Nuclei

    Full text link
    A great deal of research work has been undertaken in the alpha-clustering study since the pioneering discovery, half a century ago, of 12C+12C molecular resonances. Our knowledge of the field of the physics of nuclear molecules has increased considerably and nuclear clustering remains one of the most fruitful domains of nuclear physics, facing some of the greatest challenges and opportunities in the years ahead. In this work, the occurence of "exotic" shapes in light N=Z alpha-like nuclei is investigated. Various approaches of superdeformed and hyperdeformed bands associated with quasimolecular resonant structures are presented. Results on clustering aspects are also discussed for light neutron-rich Oxygen isotopes.Comment: 12 pages, 5 figures. Invited Talk presented by C. Beck at the Zakopane Conference on Nuclear Physics "Extremes of the Nuclear Landscape" XLV in the series of Zakopane Schools of Physics - International Symposium - Zakopane, Poland, August 30 - September 5, 2010.To be publihed in Acta Physica Polonica B42 no 3, March 201

    Structure of excited states of Be-11 studied with Antisymmetrized Molecular Dynamics

    Get PDF
    The structures of the ground and excited states of Be-11 were studied with a microscopic method of antisymmetrized molecular dynamics. The theoretical results reproduce the abnormal parity of the ground state and predict various kinds of excited states. We suggest a new negative-parity band with a well-developed clustering structure which reaches high-spin states. Focusing on a 2α2\alpha clustering structure, we investigated structure of the ground and excited states. We point out that molecular orbits play important roles for the intruder ground state and the low-lying 2ℏω2\hbar \omega states. The features of the breaking of α\alpha clusters were also studied with the help of data for Gamow-Teller transitions.Comment: 24 pages, 7 figures, to be submitted to Phys.Rev.
    • …
    corecore