36,384 research outputs found
Linear response theory around a localized impurity in the pseudogap regime of an anisotropic superconductor: precursor pairing vs the d-density-wave scenario
We derive the polarizability of an electron system in (i) the superconducting
phase, with d-wave symmetry, (ii) the pseudogap regime, within the precursor
pairing scenario, and (iii) the d-density-wave (dDW) state, characterized by a
d-wave hidden order parameter, but no pairing. Such a calculation is motivated
by the recent proposals that imaging the effects of an isolated impurity may
distinguish between precursor pairing and dDW order in the pseudogap regime of
the high-Tc superconductors. In all three cases, the wave-vector dependence of
the polarizability is characterized by an azymuthal modulation, consistent with
the d-wave symmetry of the underlying state. However, only the dDW result shows
the fingerprints of nesting, with nesting wave-vector Q=(pi,pi), albeit
imperfect, due to a nonzero value of the hopping ratio t'/t in the band
dispersion relation. As a consequence of nesting, the presence of hole pockets
is also exhibited by the (q,omega) dependence of the retarded polarizability.Comment: accepted in Phys. Rev.
Effective action approach to the Leggett's mode in two-band superconductors
We investigate a collective excitation (Leggett's mode) corresponding to
small fluctuations of the relative phase of two condensates in two-band
superconductor using the effective ``phase only'' action. We consider the
possibility of observing Leggett's mode in MgB superconductor and conclude
that for the known at present values of the two-band model parameters for
MgB Leggett's mode arises above the two-particle threshold.Comment: 9 pages, RevTeX4; final version published in EPJ
Spin lifetimes and strain-controlled spin precession of drifting electrons in zinc blende type semiconductors
We study the transport of spin polarized electrons in n-GaAs using spatially
resolved continuous wave Faraday rotation. From the measured steady state
distribution, we determine spin relaxation times under drift conditions and, in
the presence of strain, the induced spin splitting from the observed spin
precession. Controlled variation of strain along [110] allows us to deduce the
deformation potential causing this effect, while strain along [100] has no
effect. The electric field dependence of the spin lifetime is explained
quantitatively in terms of an increase of the electron temperature.Comment: 5 pages, 6 figure
R116C mutation of cationic trypsinogen in a Turkish family with recurrent pancreatitis illustrates genetic microheterogeneity of hereditary pancreatitis
Hereditary pancreatitis is due to heterozygosity for gain-of-function mutations in the cationic trypsinogen gene which result in increased levels of active trypsin within pancreatic acinar cells and autodigestion of the pancreas. The number of disease-causing defects is generally considered to be low. To gain further insight into the molecular basis of this disorder, DNA sequence analysis of all five exons was performed in 109 unrelated patients with idiopathic chronic pancreatitis in order to determine the variability of the underlying mutations. Two German females and one German male were carriers of the most common N291 and R122H mutations (trypsinogen numbering system). In a Turkish proband, an arginine (CGT) to cysteine (TGT) substitution at amino acid position 116 was identified. Family screening demonstrated that the patient had inherited the mutation from his asymptomatic father and that he had transmitted it to both of his children, his daughter being symptomatic since the age of 3 years. In addition, a German male was found to be a heterozygote for a D100H (GAC-->CAC) amino acid replacement. Our data provide evidence for genetic heterogeneity of hereditary pancreatitis. The growing number of cationic trypsinogen mutations is expected to change current mutation screening practices for this disease
Impossible shadows and lightness constancy
The intersection between an illumination and a reflectance edge is characterised by the
`ratio-invariant' property, that is the luminance ratio of the regions under different illumination
remains the same.
In a CRT experiment, we shaped two areas, one surrounding the other, and simulated
an illumination edge dividing them in two frames of illumination. The portion of the illumina-
tion edge standing on the surrounding area (labelled contextual background) was the contextual
edge, while the portion standing on the enclosed area (labelled mediating background) was the
mediating edge. On the mediating background, there were two patches, one per illumination
frame. Observers were asked to adjust the luminance of the patch in bright illumination to
equate the lightness of the other. We compared conditions in which the luminance ratio at the
contextual edge could be (i) equal (possible shadow), or (ii) larger (impossible shadow) than
that at the mediating edge. In addition, we manipulated the reflectance of the backgrounds.
It could be higher for the contextual than for the mediating background; or, vice versa, lower
for the contextual than for the mediating background. Results reveal that lightness constancy
significantly increases when: (i) the luminance ratio at the contextual edge is larger than that at
the mediating edge creating an impossible shadow, and (ii) the reflectance of the contextual
background is lower than that of the mediating one. We interpret our results according to the
albedo hypothesis, and suggest that the scission process is facilitated when the luminance ratio
at the contextual edge is larger than that at the mediating edge and/or the reflectance of the
including area is lower than that of the included one. This occurs even if the ratio-invariant
property is violated
- …