244 research outputs found
Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains
Background: Saccharomyces cerevisiae (Baker’s yeast) is found in diverse ecological niches and is characterized by
high adaptive potential under challenging environments. In spite of recent advances on the study of yeast
genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto
this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and
laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and
stationary growth phases.
Results: Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose
metabolism and in the stress response elicited during fermentation were among the most variable. This gene
expression diversity increased at the onset of stationary phase (diauxic shift). Environmental isolates showed lower
average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and
sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression
among the environmental isolates.
Conclusions: Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol
accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results
support previous data showing that gene expression variability is a source of phenotypic diversity among closely
related organisms.Fundação para a Ciência e TecnologiaThe authors wish to thank Adega Cooperativa da Bairrada, Cantanhede,
Portugal, for providing the commercial strains
Chronic kidney disease after liver, cardiac, lung, heart–lung, and hematopoietic stem cell transplant
Patient survival after cardiac, liver, and hematopoietic stem cell transplant (HSCT) is improving; however, this survival is limited by substantial pretransplant and treatment-related toxicities. A major cause of morbidity and mortality after transplant is chronic kidney disease (CKD). Although the majority of CKD after transplant is attributed to the use of calcineurin inhibitors, various other conditions such as thrombotic microangiopathy, nephrotic syndrome, and focal segmental glomerulosclerosis have been described. Though the immunosuppression used for each of the transplant types, cardiac, liver and HSCT is similar, the risk factors for developing CKD and the CKD severity described in patients after transplant vary. As the indications for transplant and the long-term survival improves for these children, so will the burden of CKD. Nephrologists should be involved early in the pretransplant workup of these patients. Transplant physicians and nephrologists will need to work together to identify those patients at risk of developing CKD early to prevent its development and progression to end-stage renal disease
- …