11,418 research outputs found

    Uniqueness of bounded solutions for the homogeneous Landau equation with a Coulomb potential

    Full text link
    We prove the uniqueness of bounded solutions for the spatially homogeneous Fokker-Planck-Landau equation with a Coulomb potential. Since the local (in time) existence of such solutions has been proved by Arsen'ev-Peskov (1977), we deduce a local well-posedness result. The stability with respect to the initial condition is also checked

    Effect of nose bluntness and afterbody shape on aerodynamic characteristics of a monoplanar missile concept with bodies of circular and elliptical cross sections at a Mach number of 2.50

    Get PDF
    The tests were performed at a Mach number of 2.50 and at angles of attack from about -4 deg to 32 deg. The results indicate that increasing nose bluntness increases zero lift drag and decreases both the maximum lift-drag ratio and the level of directional stability. The center of pressure generally moves forward with increasing nose size; however, small nose radii on the modified elliptical configurations move the center of pressure rearward. The circular bodied configurations exhibit the greatest longitudinal stability and the least directional stability. Concepts with the variable geometry afterbody contour display the most directional stability and the greatest zero lift drag

    Aerodynamic characteristics of a supersonic cruise airplane configuration at Mach numbers of 2.30, 2.96, and 3.30

    Get PDF
    An investigation was made in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30, 2.96, and 3.30 to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise airplane. The configuration, with a design Mach number of 3.0, has a highly swept arrow wing with tip panels of lesser sweep, a fuselage chine, outboard vertical tails, and outboard engines mounted in nacelles beneath the wings. For wind tunnel test conditions, a trimmed value above 6.0 of the maximum lift-drag ratio was obtained at the design Mach number. The configuration was statically stable, both longitudinally and laterally. Data are presented for variations of vertical-tail roll-out and toe-in and for various combinations of components. Some roll control data are shown as are data for the various sand grit sizes used in fixing the boundary layer transition location

    Stability and control characteristics at Mach numbers from 0.20 to 4.63 of a cruciform air-to-air missile with triangular canard controls and a trapezoidal wing

    Get PDF
    Investigations have been conducted in the Langley 8-foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel at Mach numbers from 0.20 to 4.63 to determine the stability and control characteristics of a cruciform air-to-air missile with triangular canard controls and a trapezoidal wing. The results indicate that canards are effective in producing pitching moment throughout most of the test angle-of-attack and Mach number range and that the variations of pitching moment with lift for trim conditions are relatively linear. There is a decrease in canard effectiveness with an increase in angle of attack up to about Mach 2.50 as evidenced by the beginning of coalescence of the pitching-moment curves. At a Mach number above 2.50, there is an increase in effectiveness at moderate to high angles of attack. Simulated launch straps have little effect on the lift and pitch characteristics but do cause an increase in drag, and this increase in drag induces a rolling moment at a zero roll attitude where the straps cause an asymmetric geometric shape. The canards are not suitable devices for roll control and, at some Mach numbers and roll attitudes, are not effective in producing pure yawing moments

    Measurement of thermal conductance of silicon nanowires at low temperature

    Full text link
    We have performed thermal conductance measurements on individual single crystalline silicon suspended nanowires. The nanowires (130 nm thick and 200 nm wide) are fabricated by e-beam lithography and suspended between two separated pads on Silicon On Insulator (SOI) substrate. We measure the thermal conductance of the phonon wave guide by the 3 method. The cross-section of the nanowire approaches the dominant phonon wavelength in silicon which is of the order of 100 nm at 1K. Above 1.3K the conductance behaves as T3, but a deviation is measured at the lowest temperature which can be attributed to the reduced geometry

    On the uniqueness for the spatially homogeneous Boltzmann equation with a strong angular singularity

    Full text link
    We prove an inequality on the Wasserstein distance with quadratic cost between two solutions of the spatially homogeneous Boltzmann equation without angular cutoff, from which we deduce some uniqueness results. In particular, we obtain a local (in time) well-posedness result in the case of (possibly very) soft potentials. A global well-posedeness result is shown for all regularized hard and soft potentials without angular cutoff. Our uniqueness result seems to be the first one applying to a strong angular singularity, except in the special case of Maxwell molecules. Our proof relies on the ideas of Tanaka: we give a probabilistic interpretation of the Boltzmann equation in terms of a stochastic process. Then we show how to couple two such processes started with two different initial conditions, in such a way that they almost surely remain close to each other

    Field-dependent diamagnetic transition in magnetic superconductor Sm1.85Ce0.15CuO4−ySm_{1.85} Ce_{0.15} Cu O_{4-y}

    Full text link
    The magnetic penetration depth of single crystal Sm1.85Ce0.15CuO4−y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} was measured down to 0.4 K in dc fields up to 7 kOe. For insulating Sm2CuO4\rm{Sm_2CuO_4}, Sm3+^{3+} spins order at the N\'{e}el temperature, TN=6T_N = 6 K, independent of the applied field. Superconducting Sm1.85Ce0.15CuO4−y\rm{Sm_{1.85}Ce_{0.15}CuO_{4-y}} (Tc≈23T_c \approx 23 K) shows a sharp increase in diamagnetic screening below T∗(H)T^{\ast}(H) which varied from 4.0 K (H=0H = 0) to 0.5 K (H=H = 7 kOe) for a field along the c-axis. If the field was aligned parallel to the conducting planes, T∗T^{\ast} remained unchanged. The unusual field dependence of T∗T^{\ast} indicates a spin freezing transition that dramatically increases the superfluid density.Comment: 4 pages, RevTex

    Aerodynamic characteristics in pitch of a 1/7-scale model of a two- and three-stage rocket configuration at Mach numbers of 0.4 to 4.63

    Get PDF
    Aerodynamic characteristics in pitch of scale model of two and three stage rocket configuration at Mach numbers of 0.4 to 4.6

    Geothermal studies - Yellowstone National Park /test site 11/, Wyoming

    Get PDF
    Summary report of diamond drilling in thermal areas of Yellowstone National Park, and method for determining heat flow in thermal area
    • …
    corecore