54 research outputs found
A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes.
Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation.
We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes.
The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo.
We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer
Signaling Pathways, Chemical and Biological Modulators of Nucleotide Excision Repair: The Faithful Shield against UV Genotoxicity
International audienc
Xeroderma Pigmentosum C: A Valuable Tool to Decipher the Signaling Pathways in Skin Cancers
Xeroderma pigmentosum (XP) is a rare autosomal genodermatosis that manifests clinically with pronounced sensitivity to ultraviolet (UV) radiation and the high probability of the occurrence of different skin cancer types in XP patients. XP is mainly caused by mutations in XP-genes that are involved in the nucleotide excision repair (NER) pathway that functions in the removal of bulky DNA adducts. Besides, the aggregation of DNA lesions is a life-threatening event that might be a key for developing various mutations facilitating cancer appearance. One of the key players of NER is XPC that senses helical distortions found in damaged DNA. The majority of XPC gene mutations are nonsense, and some are missense leading either to the loss of XPC protein or to the expression of a truncated nonfunctional version. Given that no cure is yet available, XPC patients should be completely protected and isolated from all types of UV radiations (UVR). Although it is still poorly understood, the characterization of the proteomic signature of an XPC mutant is essential to identify mediators that could be targeted to prevent cancer development in XPC patients. Unraveling this proteomic signature is fundamental to decipher the signaling pathways affected by the loss of XPC expression following exposure to UVB radiation. In this review, we will focus on the signaling pathways disrupted in skin cancer, pathways modulating NERâs function, including XPC, to disclose signaling pathways associated with XPC loss and skin cancer occurrence
Xeroderma Pigmentosum C: A Valuable Tool to Decipher the Signaling Pathways in Skin Cancers
Xeroderma pigmentosum (XP) is a rare autosomal genodermatosis that manifests clinically with pronounced sensitivity to ultraviolet (UV) radiation and the high probability of the occurrence of different skin cancer types in XP patients. XP is mainly caused by mutations in XP-genes that are involved in the nucleotide excision repair (NER) pathway that functions in the removal of bulky DNA adducts. Besides, the aggregation of DNA lesions is a life-threatening event that might be a key for developing various mutations facilitating cancer appearance. One of the key players of NER is XPC that senses helical distortions found in damaged DNA. The majority of XPC gene mutations are nonsense, and some are missense leading either to the loss of XPC protein or to the expression of a truncated nonfunctional version. Given that no cure is yet available, XPC patients should be completely protected and isolated from all types of UV radiations (UVR). Although it is still poorly understood, the characterization of the proteomic signature of an XPC mutant is essential to identify mediators that could be targeted to prevent cancer development in XPC patients. Unraveling this proteomic signature is fundamental to decipher the signaling pathways affected by the loss of XPC expression following exposure to UVB radiation. In this review, we will focus on the signaling pathways disrupted in skin cancer, pathways modulating NERâs function, including XPC, to disclose signaling pathways associated with XPC loss and skin cancer occurrence
Xeroderma Pigmentosum C: A Valuable Tool to Decipher the Signaling Pathways in Skin Cancers
Xeroderma pigmentosum (XP) is a rare autosomal genodermatosis that manifests clinically with pronounced sensitivity to ultraviolet (UV) radiation and the high probability of the occurrence of different skin cancer types in XP patients. XP is mainly caused by mutations in XP-genes that are involved in the nucleotide excision repair (NER) pathway that functions in the removal of bulky DNA adducts. Besides, the aggregation of DNA lesions is a life-threatening event that might be a key for developing various mutations facilitating cancer appearance. One of the key players of NER is XPC that senses helical distortions found in damaged DNA. The majority of XPC gene mutations are nonsense, and some are missense leading either to the loss of XPC protein or to the expression of a truncated nonfunctional version. Given that no cure is yet available, XPC patients should be completely protected and isolated from all types of UV radiations (UVR). Although it is still poorly understood, the characterization of the proteomic signature of an XPC mutant is essential to identify mediators that could be targeted to prevent cancer development in XPC patients. Unraveling this proteomic signature is fundamental to decipher the signaling pathways affected by the loss of XPC expression following exposure to UVB radiation. In this review, we will focus on the signaling pathways disrupted in skin cancer, pathways modulating NERâs function, including XPC, to disclose signaling pathways associated with XPC loss and skin cancer occurrence
Characterization and assessment of potential microRNAs involved in phosphate-induced aortic calcification
Medial artery calcification, a hallmark of type 2 diabetes mellitus and chronic kidney disease (CKD), is known as an independent risk factor for cardiovascular mortality and morbidity. Hyperphosphatemia associated with CKD is a strong stimulator of vascular calcification but the molecular mechanisms regulating this process remain not fully understood. We showed that calcification was induced after exposing Sprague-Dawley rat aortic explants to high inorganic phosphate level (P i , 6 mM) as examined by Alizarin red and Von Kossa staining. This calcification was associated with high Tissue-Nonspecific Alkaline Phosphatase (TNAP) activity, vascular smooth muscle cells de-differentiation, manifested by downregulation of smooth muscle 22 alpha (SM22?) protein expression which was assessed by immunoblot analysis, immunofluorescence, and trans-differentiation into osteo-chondrocyte-like cells revealed by upregulation of Runt related transcription factor 2 (Runx2), TNAP, osteocalcin, and osteopontin mRNA levels which were determined by quantitative real-time PCR. To unravel the possible mechanism(s) involved in this process, microRNA (miR) expression profile, which was assessed using TLDA technique and thereafter confirmed by individual qRT-PCR, revealed differential expression 10 miRs, five at day 3 and 5 at day 6 post P i treatment versus control untreated aortas. At day 3, miR-200c, -155, 322 were upregulated and miR-708 and 331 were downregulated. After 6 days of treatment, miR-328, -546, -301a were upregulated while miR-409 and miR-542 were downregulated. Our results indicate that high P i levels trigger aortic calcification and modulation of certain miRs. These observations suggest that mechanisms regulating aortic calcification might involve miRs, which warrant further investigations in future studies. - 2017 Wiley Periodicals, Inc.Lebanese University and the Lebanese National Council for Scientific Research (CNRS), Grant number: 05-06-2014 (EH) Authors are grateful to the Lebanese University (LU) and the Lebanese National Council for Scientific Research (CNRS-L) for providing PhD scholarships to Maya Fakhry and Najwa Skafi
Targeting Lipid Metabolism in Liver Cancer
International audienceCancer cells are highly dependent on different metabolic pathways for sustaining their survival, growth, and proliferation. Lipid metabolism not only provides the energetic needs of the cells but also provides the raw material for cellular growth and the signaling molecules for many oncogenic pathways. Mainly processed in the liver, lipids play an essential role in the physiology of this organ and in the pathological progression of many diseases such as metabolic syndrome and hepatocellular carcinoma (HCC). The progression of HCC is associated with inflammation and complex metabolic reprogramming, and its prognosis remains poor because of the lack of effective therapies despite many years of dedicated research. Defects in hepatic lipid metabolism induce abnormal gene expression and rewire many cellular pathways involved in oncogenesis and metastasis, implying that interfering with lipid metabolism within the tumor and the surrounding microenvironment may be a novel therapeutic approach for treating liver cancer patients. Therefore, this review focuses on the latest advances in drugs targeting lipid metabolism and leading to promising outcomes in preclinical studies and some ongoing clinical trials
Th17 immune response to adipose tissueâderived mesenchymal stromal cells
Adipose tissueâderived mesenchymal stromal cells (ASCs) hold the promise of achieving successful immunotherapeutic results due to their ability to regulate different Tâcell fate. ASCs also show significant adaptability to environmental stresses by modulating their immunologic profile. Cellâbased therapy for inflammatory disease requires a detailed understanding of the molecular relation between ASCs and Th17 lymphocytes taking into account the influence of inflammation and cell ratio on such interaction. Accordingly, a doseâdependent increase in Th17 generation was only observed in high MSC:Tâcell ratio with no significant impact of inflammatory priming. ILâ23 receptor (ILâ23R) expression by T cells was not modulated by ASCs when compared to levels in activated T cells, while RORâÎłt expression was significantly increased reaching a maximum in high (1:5) unprimed ASC:Tâcell ratio. Finally, multiplex immunoassay showed substantial changes in the secretory profile of 15 cytokines involved in the Th17 immune response (ILâ1ÎČ, ILâ4, ILâ6, ILâ10, ILâ17A, ILâ17F, ILâ22, ILâ21, ILâ23, ILâ25, ILâ31, ILâ33, IFNâÎł, sCD40, and TNFâα), which was modulated by both cell ratio and inflammatory priming. These findings suggest that Th17 lymphocyte pathway is significantly modulated by ASCs that may lead to immunological changes. Therefore, future ASCâbased immunotherapy should take into account the complex and detailed molecular interactions that depend on several factors including inflammatory priming and cell ratio
- âŠ