1,401 research outputs found

    The Trial of Queen Caroline and the Impeachment of President Clinton: Law As a Weapon for Political Reform

    Get PDF
    This Article addresses the trial of Queen Caroline in the English House of Lords in 1820, and the impeachment in 1998 and trial in 1999 of President Clinton

    An Analysis of the Legality of Television Cameras Broadcasting Juror Deliberations in a Criminal Case

    Get PDF
    This work sets out the constitutional, statutory, and common law applicable to television’s intrusion into the jury room. The first section addresses federal constitutional considerations focusing on Article III Section 2, the Sixth Amendment, and the First Amendment. The second section analyzes certain federal rules and particular statutes applicable to televising federal judicial proceedings, as well as the rationale behind their enactment. Finally, the third section discusses comparative approaches addressing television’s intrusion into the courtroom, particularly focusing on recent jurisprudence from the European Court of Human Rights and the Scottish Court of Session

    Do PTK2 gene polymorphisms contribute to the interindividual variability in muscle strength and the response to resistance training? A preliminary report.

    Get PDF
    The protein tyrosine kinase-2 (PTK2) gene encodes focal adhesion kinase, a structural protein involved in lateral transmission of muscle fiber force. We investigated whether single-nucleotide polymorphisms (SNPs) of the PTK2 gene were associated with various indexes of human skeletal muscle strength and the interindividual variability in the strength responses to resistance training. We determined unilateral knee extension single repetition maximum (1-RM), maximum isometric voluntary contraction (MVC) knee joint torque, and quadriceps femoris muscle specific force (maximum force per unit physiological cross-sectional area) before and after 9 wk of knee extension resistance training in 51 untrained young men. All participants were genotyped for the PTK2 intronic rs7843014 A/C and 3'-untranslated region (UTR) rs7460 A/T SNPs. There were no genotype associations with baseline measures or posttraining changes in 1-RM or MVC. Although the training-induced increase in specific force was similar for all PTK2 genotypes, baseline specific force was higher in PTK2 rs7843014 AA and rs7460 TT homozygotes than in the respective rs7843014 C- (P = 0.016) and rs7460 A-allele (P = 0.009) carriers. These associations between muscle specific force and PTK2 SNPs suggest that interindividual differences exist in the way force is transmitted from the muscle fibers to the tendon. Therefore, our results demonstrate for the first time the impact of genetic variation on the intrinsic strength of human skeletal muscle

    Muscle Growth, Repair and Preservation: A Mechanistic Approach

    Get PDF
    Resistance exercise, amino acid ingestion and an anabolic hormone environment all have the capacity to elevate muscle protein synthesis (MPS), while a catabolic hormone environment, such as elevated pro-inflammatory cytokines as seen during disuse, aging, and conditions such as cancer and AIDS, can cause an increase in muscle protein degradation (MPD). When the rate of MPS exceeds that of MPD there is a positive net protein balance (NPB) and over a prolonged period of time this results in accretion of contractile material and muscle growth, or hypertrophy. In contrast, when NPB is chronically negative, muscle atrophy occurs, i.e. muscle size decreases. Various signaling pathways within the muscle fiber appear to play a crucial role in the adaptive processes, and understanding how these pathways can be modulated will help the design of therapies to prevent or reverse muscle atrophy in a host of muscle wasting conditions

    The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training

    Get PDF
    Alternative measures of muscle size, strength, and power to those used in previous studies could help resolve the controversy surrounding associations between polymorphisms of the angiotensin-I converting enzyme (ACE) and α-actinin-3 (ACTN3) genes and skeletal muscle phenotypes, and the responses to resistance training (RT). To this end, we measured quadriceps femoris muscle volume (Vm), physiological cross-sectional area (PCSA), maximum isometric force (Ft), specific force (Ft per unit PCSA), maximum isoinertial strength (1-RM), and maximum power (Wmax; n = 40) before and after 9-week knee extension RT in 51 previously untrained young men, who were genotyped for the ACE I/D and ACTN3 R577X polymorphisms. ACTN3 R-allele carriers had greater Vm, 1-RM, and Wmax than XX homozygotes at baseline (all P  0.05). Muscle phenotypes were independent of ACE genotype before (all P > 0.05) and after RT (all P > 0.01). However, people with the “optimal” ACE+ACTN3 genotype combination had greater baseline 1-RM and Wmax compared to those with the “suboptimal” profile (both P < 0.0125). We show for the first time that the ACTN3 R577X polymorphism is associated with human Vm and (independently and in combination with the ACE I/D polymorphism) influences 1-RM and Wmax

    High-resolution broadband spectroscopy using externally dispersed interferometry at the Hale telescope: Part 1, data analysis and results

    Full text link
    High-resolution broadband spectroscopy at near-infrared wavelengths (950 to 2450 nm) has been performed using externally dispersed interferometry (EDI) at the Hale telescope at Mt. Palomar. Observations of stars were performed with the “TEDI” interferometer mounted within the central hole of the 200-in. primary mirror in series with the comounted TripleSpec near-infrared echelle spectrograph. These are the first multidelay EDI demonstrations on starlight, as earlier measurements used a single delay or laboratory sources. We demonstrate very high (10×) resolution boost, from original 2700 to 27,000 with current set of delays (up to 3 cm), well beyond the classical limits enforced by the slit width and detector pixel Nyquist limit. Significantly, the EDI used with multiple delays rather than a single delay as used previously yields an order of magnitude or more improvement in the stability against native spectrograph point spread function (PSF) drifts along the dispersion direction. We observe a dramatic (20×) reduction in sensitivity to PSF shift using our standard processing. A recently realized method of further reducing the PSF shift sensitivity to zero is described theoretically and demonstrated in a simple simulation which produces a 350× times reduction. We demonstrate superb rejection of fixed pattern noise due to bad detector pixels—EDI only responds to changes in pixel intensity synchronous to applied dithering. This part 1 describes data analysis, results, and instrument noise. A section on theoretical photon limited sensitivity is in a companion paper, part 2

    Nucleation mechanism for the direct graphite-to-diamond phase transition

    Full text link
    Graphite and diamond have comparable free energies, yet forming diamond from graphite is far from easy. In the absence of a catalyst, pressures that are significantly higher than the equilibrium coexistence pressures are required to induce the graphite-to-diamond transition. Furthermore, the formation of the metastable hexagonal polymorph of diamond instead of the more stable cubic diamond is favored at lower temperatures. The concerted mechanism suggested in previous theoretical studies cannot explain these phenomena. Using an ab initio quality neural-network potential we performed a large-scale study of the graphite-to-diamond transition assuming that it occurs via nucleation. The nucleation mechanism accounts for the observed phenomenology and reveals its microscopic origins. We demonstrated that the large lattice distortions that accompany the formation of the diamond nuclei inhibit the phase transition at low pressure and direct it towards the hexagonal diamond phase at higher pressure. The nucleation mechanism proposed in this work is an important step towards a better understanding of structural transformations in a wide range of complex systems such as amorphous carbon and carbon nanomaterials

    Carrier-Induced Magnetic Circular Dichloism in the Magnetoresistive Pyrochlore Tl2Mn2O7

    Full text link
    Infrared magnetic circular dichloism (MCD), or equivalently magneto-optical Kerr effect, has been measured on the Tl2Mn2O7 pyrochlore, which is well known for exhibiting a large magnetoresistance around the Curie temperature T_C ~ 120 K. A circularly polarized, infrared synchrotron radiation is used as the light source. A pronounced MCD signal is observed exactly at the plasma edge of the reflectivity near and below T_c. However, contrary to the conventional behavior of MCD for ferromagnets, the observed MCD of Tl2Mn2O7 grows with the applied magnetic field, and not scaled with the internal magnetization. It is shown that these results can be basically understood in terms of a classical magnetoplasma resonance. The absence of a magnetization-scaled MCD indicates a weak spin-orbit coupling of the carriers in Tl2Mn2O7. We discuss the present results in terms of the microscopic electronic structures of Tl2Mn2O7.Comment: 5 pages, 5 figures, submitted to J. Phys. Soc. Jp
    • …
    corecore