2,433 research outputs found

    A Cross-Sectional Survey in Progress on Factors Affecting Students’ Academic Performance at a Turkish University

    Get PDF
    AbstractThe present cross-sectional survey concerns the factors affecting students’ academic performance at Middle East Technical University in Ankara in Turkey. According to their cumulative grade point average, the students have been categorized as high, average or low achievers. The main research question is: What are the differences between high- and low-achieving students’ academic study skills, habits and perceptions as regards the factors affecting their academic performance? The researcher-designed questionnaire was empirically pretested. The quantitative data have been analyzed by Chi-square independence test, and a significant relationship was found between students’ achievement and factors such as preparatory school attendance, high school graduated from, father's education level, and class attendance

    Application of AA-PSP to hypersonic flows: the double ramp model

    Get PDF
    Anodized Aluminium Pressure Sensitive Paint (AA-PSP) is known for its rapid response characteristics, making it a highly desirable technique when studying high-speed phenomenon on a global scale. The current study examines the efficacy of the AA-PSP technique, which is prepared with a more practical approach than that reported in literature, in analysing the flow characteristics of a double ramp model placed in hypersonic flow of M = 5. Three different flow angles of 0°, −2°, and −4° are studied. Two-dimensional colour schlieren visualisation, using a colour wheel, is employed alongside high sensitivity Kulite pressure tap data to corroborate the AA-PSP findings. The AA-PSP results show good correlation between the qualitative schlieren and ±8.9% discrepency with the quantitative pressure tap data. The more practical AA-PSP preparation proposed in the current study, which uses aluminium alloy 6-series rather than pure aluminium, is proved to have the response time and the accuracy to be applied to unsteady high-speed flows

    Color science of nanocrystal quantum dots for lighting and displays

    Get PDF
    Cataloged from PDF version of article.Colloidal nanocrystals of semiconductor quantum dots (QDs) are gaining prominence among the optoelectronic materials in the photonics industry. Among their many applications, their use in artificial lighting and displays has attracted special attention thanks to their high efficiency and narrow emission band, enabling spectral purity and fine tunability. By employing QDs in color-conversion LEDs, it is possible to simultaneously accomplish successful color rendition of the illuminated objects together with a good spectral overlap between the emission spectrum of the device and the sensitivity of the human eye, in addition to a warm white color, in contrast to other conventional sources such as incandescent and fluorescent lamps, and phosphor-based LEDs, which cannot achieve all of these properties at the same time. In this review, we summarize the color science of QDs for lighting and displays, and present the recent developments in QD-integrated LEDs and display research. First, we start with a general introduction to color science, photometry, and radiometry. After presenting an overview of QDs, we continue with the spectral designs of QD-integrated white LEDs that have led to efficient lighting for indoor and outdoor applications. Subsequently, we discuss QD color-conversion LEDs and displays as proof-of-concept applications - a new paradigm in artificial lighting and displays. Finally, we conclude with a summary of research opportunities and challenges along with a future outlook

    Behavioral Modeling of a C-Band Ring Hybrid Coupler Using Artificial Neural Networks

    Get PDF
    Artificial Neural Networks (ANNs) gained importance on the RF microwave (MW) design area and behavioral modeling of MW components in the past few decades. This paper presents a cost effective neural network (NN) approach to overcome design, modeling and optimization problems of an 180deg ring hybrid coupler operating in C-Band. The proposed NN model is trained by data sets obtained from electromagnetic (EM) simulators and neural test results are compared with simulator findings to determine the network accuracy. Moreover, necessary trade-offs are applied to improve the networks’ performance. Finally correlation factors, which are defined as comparison criteria between EM-simulator and proposed neural models, are calculated for each trade-off case

    Filter design for small target detection on infrared imagery using normalized-cross-correlation layer

    Get PDF
    In this paper, we introduce a machine learning approach to the problem of infrared small target detection filter design. For this purpose, similarly to a convolutional layer of a neural network, the normalized-cross-correlational (NCC) layer, which we utilize for designing a target detection/recognition filter bank, is proposed. By employing the NCC layer in a neural network structure, we introduce a framework, in which supervised training is used to calculate the optimal filter shape and the optimum number of filters required for a specific target detection/recognition task on infrared images. We also propose the mean-absolute-deviation NCC (MAD-NCC) layer, an efficient implementation of the proposed NCC layer, designed especially for FPGA systems, in which square root operations are avoided for real-time computation. As a case study we work on dim-target detection on mid-wave infrared imagery and obtain the filters that can discriminate a dim target from various types of background clutter, specific to our operational concept

    High scotopic/photopic ratio white-light-emitting diodes integrated with semiconductor nanophosphors of colloidal quantum dots

    Get PDF
    Cataloged from PDF version of article.We propose and demonstrate single-chip white-light-emitting diodes (WLEDs) integrated with semiconductor nanophosphors of colloidal quantum dots for high scotopic/photopic (S/P) ratio. These color conversion WLEDs achieve S/P ratios over 3.00, which exceeds the current limit of 2.50 in common lighting technologies, while sustaining sufficient levels of color rendering index. (C) 2011 Optical Society of Americ

    Computational study of power conversion and luminous efficiency performance for semiconductor quantum dot nanophosphors on light-emitting diodes

    Get PDF
    Cataloged from PDF version of article.We present power conversion efficiency (PCE) and luminous efficiency (LE) performance levels of high photometric quality white LEDs integrated with quantum dots (QDs) achieving an averaged color rendering index of >= 90 (with R9 at least 70), a luminous efficacy of optical radiation of >= 380 lm/W-opt a correlated color temperature of <= 4000 K, and a chromaticity difference dC <0.0054. We computationally find that the device LE levels of 100, 150, and 200 lm/W-elect can be achieved with QD quantum efficiency of 43%, 61%, and 80% in film, respectively, using state-of-the-art blue LED chips (81.3% PCE). Furthermore, our computational analyses suggest that QD-LEDs can be both photometrically and electrically more efficient than phosphor based LEDs when state-of-the-art QDs are used. (C) 2012 Optical Society of Americ

    Macrocrystals of Colloidal Quantum Dots in Anthrancene: Exciton Trannsfer and Polarized Emission

    Get PDF
    Cataloged from PDF version of article.In this work, centimeter-scale macrocrystals of nonpolar colloidal quantum dots (QDs) incorporated into anthracene were grown for the first time. The exciton transfer from the anthracene host to acceptor QDs was systematically investigated, and anisotropic emission from the isotropic QDs in the anthracene macrocrystals was discovered. Results showed a decreasing photoluminescence lifetime of the donor anthracene, indicating a strengthening energy transfer with increasing QD concentration in the macrocrystals. With the anisotropy study, QDs inside the anthracene host acquired a polarization ratio of similar to 1.5 at 0 degrees collection angle, and this increases to similar to 2.5 at the collection angle of 60 degrees. A proof-of-concept application of these excitonic macrocrystals as tunable color converters on light-emitting diodes was also demonstrated

    Warm-white light-emitting diodes integrated with colloidal quantum dots for high luminous efficacy and color rendering

    Get PDF
    Cataloged from PDF version of article.Warm-white LEDs (WLEDs) with high spectral quality and efficiency are required for lighting applications, but current experimental performances are limited. We report on nanocrystal quantum dot (NQD) hybridized WLEDs with high performance that exhibit a high luminous efficacy of optical radiation exceeding 350 lm/W-opt and a high color rendering index close to 90 at a low correlated color temperature <3000 K. These spectrally engineered WLEDs are obtained using a combination of CdSe/ZnS core/shell NQD nanophosphors integrated on blue InGaN/GaN LEDs. © 2010 Optical Society of Americ

    Photometric design of color-conversion LEDs

    Get PDF
    Cataloged from PDF version of article.Here the first photometric study of road-lighting white light-emitting diodes (WLEDs) integrated with semiconductor colloidal quantum dots (QDs) is reported enabling higher luminance than conventional light sources, specifically in mesopic vision regimes essential to street lighting. Investigating over 100 million designs uncovers that quality road-lighting QD-WLEDs, with a color quality scale and color rendering index >= 85, enables 13-35% higher mesopic luminance than the sources commonly used in street lighting. Furthermore, these QD-WLEDs were shown to be electrically more efficient than conventional sources with power conversion efficiencies >= 16-29%. Considering this fact, an experimental proof-of-concept QD-WLED was demonstrated, which is the first account of QD based color conversion custom designed for street lighting applications. The obtained white LED achieved the targeted mesopic luminance levels in accordance with the road lighting standards of the USA and the UK. These results indicate that road-lighting QD-WLEDs are strongly promising for energy-saving quality road lighting
    corecore