49,587 research outputs found
Rocketdyne's advanced coal slurry pumping program
The Rocketdyne Division of Rockwell International Corporation is conducting a program for the engineering, fabrication, and testing of an experimental/prototype high-capacity, high-pressure centrifugal slurry feed pump for coal liquefaction purposes. The abrasion problems in a centrifugal slurry pump are primarily due to the manner in which the hard, solid particles contained in the slurry are transported through the hydraulic flow passages within the pump. The abrasive particles can create scraping, grinding, cutting, and sandblasting effects on the various exposed parts of the pump. These critical areas involving abrasion and impact erosion wear problems in a centrifugal pump are being addressed by Rocketdyne. The mechanisms of abrasion and erosion are being studied through hydrodynamic analysis, materials evaluation, and advanced design concepts
Spin-transfer mechanism for magnon-drag thermopower
We point out a relation between the dissipative spin-transfer-torque
parameter and the contribution of magnon drag to the thermoelectric
power in conducting ferromagnets. Using this result we estimate in iron
at low temperatures, where magnon drag is believed to be the dominant
contribution to the thermopower. Our results may be used to determine
from magnon-drag-thermopower experiments, or, conversely, to infer the strength
of magnon drag via experiments on spin transfer
Odontoameloblastoma with extensive chondroid matrix deposition in a guinea pig
Odontoameloblastomas (previously incorporated within ameloblastic odontomas) are matrix-producing odontogenic mixed tumors and are closely related in histologic appearance to the 2 other types of matrix-producing odontogenic mixed tumors: odontomas and ameloblastic fibro-odontomas. The presence or absence of intralesional, induced non-neoplastic tissue must be accounted for in the diagnosis. Herein we describe a naturally occurring odontoameloblastoma with extensive chondroid cementum deposition in a guinea pig (Cavia porcellus). Microscopically, the mass featured palisading neoplastic odontogenic epithelium closely apposed to ribbons and rings of a pink dental matrix (dentinoid), alongside extensive sheets and aggregates of chondroid cementum. The final diagnosis was an odontoameloblastoma given the abundance of odontogenic epithelium in association with dentinoid but a paucity of pulp ectomesenchyme. Chondroid cementum is an expected anatomical feature of cavies, and its presence within the odontoameloblastoma was interpreted as a response of the ectomesenchyme of the dental follicle to the described neoplasm. Our case illustrates the inductive capabilities of odontoameloblastomas while highlighting species-specific anatomy that has resulted in a histologic appearance unique to cavies and provides imaging and histologic data to aid diagnosis of these challenging lesions
A Prediction of the B*_c mass in full lattice QCD
By using the Highly Improved Staggered Quark formalism to handle charm,
strange and light valence quarks in full lattice QCD, and NRQCD to handle
bottom valence quarks we are able to determine accurately ratios of the B meson
vector-pseudoscalar mass splittings, in particular,
(m(B*_c)-m(B_c))/(m(B*_s)-m(B_s)). We find this ratio to be 1.15(15), showing
the `light' quark mass dependence of this splitting to be very small. Hence we
predict m(B_c*) = 6.330(7)(2)(6) GeV where the first two errors are from the
lattice calculation and the third from existing experiment. This is the most
accurate prediction of a gold-plated hadron mass from lattice QCD to date.Comment: 4 pages, 2 figure
In situ real-time analysis of alloy film composition and segregation dynamics with parallel detection reflection electron energy loss spectroscopy
Real-time measurements of GexSi1 – x/Si(001) composition and segregation dynamics in Sn/Si(001) in molecular beam epitaxy are demonstrated using parallel detection reflection electron energy loss spectroscopy. Parallel detection enables quantitative acquisition of low-loss spectra in a time of < 500 µs and surface composition determination in GexSi1 – x/Si(001) via Ge L2,3 core loss analysis to a precision of approximately 2% in time of order 1 s. Segregation and trapping kinetics of monolayer thickness Sn films during Si epitaxy on Sn-covered Si(100) has also been studied using the Sn M4.5 core loss
Generation of ultrabright tunable polarization entanglement without spatial, spectral, or temporal constraints
The need for spatial and spectral filtering in the generation of polarization
entanglement is eliminated by combining two coherently-driven type-II
spontaneous parametric downconverters. The resulting ultrabright source emits
photon pairs that are polarization entangled over the entire spatial cone and
spectrum of emission. We detect a flux of 12 000 polarization-entangled
pairs/s per mW of pump power at 90% quantum-interference visibility, and the
source can be temperature tuned for 5 nm around frequency degeneracy. The
output state is actively controlled by precisely adjusting the relative phase
of the two coherent pumps.Comment: 10 pages, 5 figure
- …