11,758 research outputs found

    Time's Barbed Arrow: Irreversibility, Crypticity, and Stored Information

    Full text link
    We show why the amount of information communicated between the past and future--the excess entropy--is not in general the amount of information stored in the present--the statistical complexity. This is a puzzle, and a long-standing one, since the latter is what is required for optimal prediction, but the former describes observed behavior. We layout a classification scheme for dynamical systems and stochastic processes that determines when these two quantities are the same or different. We do this by developing closed-form expressions for the excess entropy in terms of optimal causal predictors and retrodictors--the epsilon-machines of computational mechanics. A process's causal irreversibility and crypticity are key determining properties.Comment: 4 pages, 2 figure

    Telling time with an intrinsically noisy clock

    Get PDF
    Intracellular transmission of information via chemical and transcriptional networks is thwarted by a physical limitation: the finite copy number of the constituent chemical species introduces unavoidable intrinsic noise. Here we provide a method for solving for the complete probabilistic description of intrinsically noisy oscillatory driving. We derive and numerically verify a number of simple scaling laws. Unlike in the case of measuring a static quantity, response to an oscillatory driving can exhibit a resonant frequency which maximizes information transmission. Further, we show that the optimal regulatory design is dependent on the biophysical constraints (i.e., the allowed copy number and response time). The resulting phase diagram illustrates under what conditions threshold regulation outperforms linear regulation.Comment: 10 pages, 5 figure

    A General Information Theoretical Proof for the Second Law of Thermodynamics

    Full text link
    We show that the conservation and the non-additivity of the information, together with the additivity of the entropy make the entropy increase in an isolated system. The collapse of the entangled quantum state offers an example of the information non-additivity. Nevertheless, the later is also true in other fields, in which the interaction information is important. Examples are classical statistical mechanics, social statistics and financial processes. The second law of thermodynamics is thus proven in its most general form. It is exactly true, not only in quantum and classical physics but also in other processes, in which the information is conservative and non-additive.Comment: 4 page

    Near-Extreme Black Holes and the Universal Relaxation Bound

    Full text link
    A fundamental bound on the relaxation time \tau of a perturbed thermodynamical system has recently been derived, \tau \geq \hbar/\pi T, where TT is the system's temperature. We demonstrate analytically that black holes saturate this bound in the extremal limit and for large values of the azimuthal number m of the perturbation field.Comment: 2 Pages. Submitted to PRD on 5/12/200

    Measuring the effective complexity of cosmological models

    Get PDF
    We introduce a statistical measure of the effective model complexity, called the Bayesian complexity. We demonstrate that the Bayesian complexity can be used to assess how many effective parameters a set of data can support and that it is a useful complement to the model likelihood (the evidence) in model selection questions. We apply this approach to recent measurements of cosmic microwave background anisotropies combined with the Hubble Space Telescope measurement of the Hubble parameter. Using mildly non-informative priors, we show how the 3-year WMAP data improves on the first-year data by being able to measure both the spectral index and the reionization epoch at the same time. We also find that a non-zero curvature is strongly disfavored. We conclude that although current data could constrain at least seven effective parameters, only six of them are required in a scheme based on the Lambda-CDM concordance cosmology.Comment: 9 pages, 4 figures, revised version accepted for publication in PRD, updated with WMAP3 result

    Lossless quantum data compression and variable-length coding

    Full text link
    In order to compress quantum messages without loss of information it is necessary to allow the length of the encoded messages to vary. We develop a general framework for variable-length quantum messages in close analogy to the classical case and show that lossless compression is only possible if the message to be compressed is known to the sender. The lossless compression of an ensemble of messages is bounded from below by its von-Neumann entropy. We show that it is possible to reduce the number of qbits passing through a quantum channel even below the von-Neumann entropy by adding a classical side-channel. We give an explicit communication protocol that realizes lossless and instantaneous quantum data compression and apply it to a simple example. This protocol can be used for both online quantum communication and storage of quantum data.Comment: 16 pages, 5 figure

    An Information--Theoretic Equality Implying the Jarzynski Relation

    Full text link
    We derive a general information-theoretic equality for a system undergoing two projective measurements separated by a general temporal evolution. The equality implies the non-negativity of the mutual information between the measurement outcomes of the earlier and later projective measurements. We show that it also contains the Jarzynski relation between the average exponential of the thermodynamical work and the exponential of the difference between the initial and final free energy. Our result elucidates the information-theoretic underpinning of thermodynamics and explains why the Jarzynski relation holds identically both quantumly as well as classically.Comment: 2 pages, no figure

    Fluctuation Theorem with Information Exchange: Role of Correlations in Stochastic Thermodynamics

    Full text link
    We establish the fluctuation theorem in the presence of information exchange between a nonequilibrium system and other degrees of freedom such as an observer and a feedback controller, where the amount of information exchange is added to the entropy production. The resulting generalized second law sets the fundamental limit of energy dissipation and energy cost during the information exchange. Our results apply not only to feedback-controlled processes but also to a much broader class of information exchanges, and provides a unified framework of nonequilibrium thermodynamics of measurement and feedback control.Comment: To appear in PR

    Information-theory-based solution of the inverse problem in classical statistical mechanics

    Full text link
    We present a procedure for the determination of the interaction potential from the knowledge of the radial pair distribution function. The method, realized inside an inverse Monte Carlo simulation scheme, is based on the application of the Maximum Entropy Principle of information theory and the interaction potential emerges as the asymptotic expression of the transition probability. Results obtained for high density monoatomic fluids are very satisfactory and provide an accurate extraction of the potential, despite a modest computational effort.Comment: 9 pages, 2 figure

    Quantum Entanglement of Moving Bodies

    Full text link
    We study the properties of quantum information and quantum entanglement in moving frames. We show that the entanglement between the spins and the momenta of two particles can be interchanged under a Lorentz transformation, so that a pair of particles that is entangled in spin but not momentum in one reference frame, may, in another frame, be entangled in momentum at the expense of spin-entanglement. Similarly, entanglement between momenta may be transferred to spin under a Lorentz transformation. While spin and momentum entanglement each is not Lorentz invariant, the joint entanglement of the wave function is.Comment: 4 pages, 2 figures. An error was corrected in the numerical data and hence the discussion of the data was changed. Also, references were added. Another example was added to the pape
    corecore