196 research outputs found

    Irradiation Tests at Cryogenic Temperatures on Diffusion Type Diodes for the LHC Superconducting Magnet Protection

    Get PDF
    Within the framework of the LHC magnet protection system, the irradiation hardness of high current by-pass diodes is subject to examination. The relocation of these diodes and recent calculations give rather low irradiation levels for the position of the diodes. This offers the possibility to replace the originally foreseen epitaxial type diodes by diffusion type diodes. Therefore, different types of 75mm diffusion diodes were submitted to an irradiation test program. One part of the experiments was performed in the Munich Research Reactor. Further irradiation tests were carried out in the northern fixed target area of the SPS accelerator at CERN

    Pionic charge exchange on the proton from 40 to 250 MeV

    Full text link
    The total cross sections for pionic charge exchange on hydrogen were measured using a transmission technique on thin CH2 and C targets. Data were taken for pi- lab energies from 39 to 247 MeV with total errors of typically 2% over the Delta-resonance and up to 10% at the lowest energies. Deviations from the predictions of the SAID phase shift analysis in the 60 to 80 MeV region are interpreted as evidence for isospin-symmetry breaking in the s-wave amplitudes. The charge dependence of the Delta-resonance properties appears to be smaller than previously reported

    Electronic Systems for the Protection of Superconducting Devices in the LHC

    Get PDF
    The Large Hadron Collider LHC [1] incorporates an unprecedented amount of superconducting components: magnets, bus-bars, and current leads. Most of them require active protection in case of a transition from the superconducting to the resistive state, the so-called quench. The electronic systems ensuring the reliable quench detection and further protection of these devices have been developed and produced over the last years and are currently being put into operatio

    Extended Kramers-Moyal analysis applied to optical trapping

    Full text link
    The Kramers-Moyal analysis is a well established approach to analyze stochastic time series from complex systems. If the sampling interval of a measured time series is too low, systematic errors occur in the analysis results. These errors are labeled as finite time effects in the literature. In the present article, we present some new insights about these effects and discuss the limitations of a previously published method to estimate Kramers-Moyal coefficients at the presence of finite time effects. To increase the reliability of this method and to avoid misinterpretations, we extend it by the computation of error estimates for estimated parameters using a Monte Carlo error propagation technique. Finally, the extended method is applied to a data set of an optical trapping experiment yielding estimations of the forces acting on a Brownian particle trapped by optical tweezers. We find an increased Markov-Einstein time scale of the order of the relaxation time of the process which can be traced back to memory effects caused by the interaction of the particle and the fluid. Above the Markov-Einstein time scale, the process can be very well described by the classical overdamped Markov model for Brownian motion.Comment: 14 pages, 18 figure

    Elastic scattering of low energy pions by nuclei and the in-medium isovector pi N amplitude

    Full text link
    Measurements of elastic scattering of 21.5 MeV pi+ and pi- by Si, Ca, Ni and Zr were made using a single arm magnetic spectrometer. Absolute calibration was made by parallel measurements of Coulomb scattering of muons. Parameters of a pion-nucleus optical potential were obtained from fits to all eight angular distributions put together. The `anomalous' s-wave repulsion known from pionic atoms is clearly observed and could be removed by introducing a chiral-motivated density dependence of the isovector scattering amplitude, which also greatly improved the fits to the data. The empirical energy dependence of the isoscalar amplitude also improves the fits to the data but, contrary to what is found with pionic atoms, on its own is incapable of removing the anomaly.Comment: 20 pages, 5 figures, 5 tables. V2 added details on uncertainties,extended discussion. To appear in PR

    The in-medium isovector pi N amplitude from low energy pion scattering

    Full text link
    Differential cross sections for elastic scattering of 21.5 MeV positive and negative pions by Si, Ca, Ni and Zr have been measured as part of a study of the pion-nucleus potential across threshold. The `anomalous' repulsion in the s-wave term was observed, as is the case with pionic atoms. The extra repulsion can be accounted for by a chiral-motivated model where the pion decay constant is modified in the medium. Unlike in pionic atoms, the anomaly cannot be removed by merely introducing an empirical on-shell energy dependence.Comment: 9 pages, 2 figures. Minor changes, to appear in PR

    Machine Protection for the LHC: Architecture of the Beam and Powering Interlock Systems

    Get PDF
    The superconducting Large Hadron Collider under construction at CERN is an accelerator with unprecedented complexity. Its operation requires a large variety of instrumentation, not only for control of the beams, but also for the control and protection of the complex hardware systems. Sophisticated protection systems are mandatory to minimise the risk for serious damage caused by a failure. Each proton beam will have an energy of more than 300 MJ, and the energy stored in the magnet system amounts to about 1.2 GJ for each sector. Ideas for the architecture of the interlocks linking the protection systems are presented here

    Low Energy Analyzing Powers in Pion-Proton Elastic Scattering

    Full text link
    Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS as well as a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.Comment: 15 pages, 4 figure
    • …
    corecore