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1 INTRODUCTION 

The energy stored in the LHC accelerator, both in the superconducting magnets and in the 
circulating beams, is unprecedented and an uncontrolled release could lead to serious damage of 
equipment. Major failures in the equipment inside the cryostats will result in long repair times, 
because such equipment is delicate and difficult to access. 

Preparing the machine for injection requires considerable time due to magnetisation effects of 
the superconducting magnets. The filling process and the acceleration phase are lengthy procedures. 
Any interruption during the accelerator operation will reduce the operational efficiency significantly.  

To optimise the operational efficiency of the accelerator, accidents should be avoided and 
interruptions should be rare and limited to a short time. Hence, a system is needed that extracts beam 
and magnet energy in case of failures as well as: 

• prevents damage to all elements in the electrical circuits: magnets, warm and cold cables, 
current leads and power converters, 

• minimises damage due to irradiation caused by beam losses, 
• provides the necessary tools to implement a consistent and congruent failure tracing throughout 

the machine. 

MACHINE PROTECTION is not an objective in itself, but should contribute to: 

• maximise operational availability by minimising time for interventions, 
• avoid causing any damage of equipment. 

Major subsystems have been designed to extract beam and magnet energy. The QUENCH 

PROTECTION SYSTEM [1] and the BEAM DUMP SYSTEM [2], [3], [4] are presented elsewhere. For 
the diagnostic of losses and to generate a trigger for the BEAM DUMP SYSTEM, the BEAM LOSS 

MONITOR SYSTEM is being designed [5], [6]. To limit the beam losses around the arc, a sophisticated 
COLLIMATION SYSTEM has been proposed [7]. Many other subsystems need to be interfaced to the 
machine protection, such as the ACCESS SYSTEM [8], POWER CONVERTER SYSTEM [9], vacuum 
valves, RF, collimators etc. In this paper the integration of all subsystems into a common MACHINE 

PROTECTION SYSTEM is discussed with an interlock system that can be understood as the glue linking 
and structuring the sub-systems. Since magnets can be powered independently from of operation 
with beam, we propose two separate systems for powering and beam operation, the POWERING 

INTERLOCK SYSTEM and the BEAM INTERLOCK SYSTEM. Figure 1 illustrates the relationship between 
the machine interlock systems and the other systems. 

Clearly, personnel safety has the highest priority. The ACCESS SYSTEM for personnel safety is 
separate and presented elsewhere, however, some ideas about the interface between the ACCESS 

SYSTEM and the machine interlocks are described here. 
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Figure 1: Relationship between powering and beam interlocks and the main LHC sub-systems. The 
systems dedicated to protection are within the grey zone.  Note: Beam loss monitors and collimation 
systems are also used in regular machine operation. 

1.1 Energy stored in the magnet system 

At nominal operating current, predominately the dipole magnets store a large amount of energy. 
The LHC magnets are powered separately in each of the eight sectors in order, amongst other 
reasons, to limit the energy stored in a particular electrical circuit. This precaution causes a substantial 
increase of the component inventory necessary for the LHC operation (power converters, current 
feedthroughs, etc.). Still, the energy in each sector of the LHC amounts to about 1.2 GJ, sufficient to 
heat up and melt 1900 kg of copper [10].  

The number of superconducting magnets exceeds 8000, with about 2000 large dipole and 
quadrupole magnets, and 6000 corrector magnets. The superconducting magnets are powered in 
about 1800 circuits, with ultimate currents of about 13 kA, 6 kA, 600 A, 120 A and 60 A, 
respectively. Copper current leads are used to power the 120 A and 60 A circuits. The leads for 
higher current include high temperature superconducting (HTS) material [11]. 

The large energy stored in the magnets presents one of the main risks during both, 
commissioning of the complex hardware and operation with beam. As an example, a quench of a 
dipole magnet is easily provoked, since the magnets are operating at 1.9 K and at a current where 
the margin is very small. An energy corresponding to a fraction of some 10-7 of the beam energy can 
quench a dipole magnet that is operating at full current (i.e. close to the critical surface). For the 
operation without beams in the machine, magnets could quench spontaneously, due to equipment 
failure, due to faulty connections, or due to a failure in the protection system. Magnets, 
superconducting bus bars, or current leads that are not properly protected can be damaged. 
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In case of a failure, the magnetic energy has to be extracted as fast as possible. Since the 
magnets have a large inductance and the voltages must be limited, the time constant for the current 
decay can be large. Extracting the energy after switching a resistor in series with the magnets can 
take several minutes. The time constant for the current decay is between about 0.1 s for some of the 
corrector magnet circuits, and 100 s for a circuit with main dipole magnets. The required response 
time to start extracting the energy is in the order of 10 ms or more for most electrical circuits (such as 
all circuits with superconducting magnets). Failures in circuits with warm magnets might require fast 
detection in order to abort the beams within a few turns [12]. 

1.2 Energy stored in the beams  

Without beam, normally the magnets should not quench by themselves. Once beam is injected, 
quenches are much more likely. The energy stored in each beam is up to 0.35 GJ, equivalent to the 
energy for warming up and melting 515 kg of copper [10]. A sophisticated collimating system 
captures protons from the tail of the particle distribution, and thus reduces beam losses into magnets 
and other equipment. The collimators installed in the two cleaning insertions must be close to the 
beam during injection, ramping and physics coast. The geometric aperture is smaller than for any 
other accelerator with superconducting magnets. If the operation of the machine becomes unsafe and 
beam losses are observed by the loss monitors, or are imminent due to equipment failure, the beams 
have to be dumped as fast as possible to prevent radiation damage, quenches, and downtime. The 
BEAM INTERLOCK SYSTEM has to collect the information. When a failure is detected, the BEAM 

DUMP SYSTEM should be informed as fast as possible to dump with minimum delay. The minimum 
time is given by: 

• The BEAM INTERLOCK SYSTEM needs to inform the BEAM DUMP SYSTEM, which takes up to 
50 µs if the signal travels half around the ring. 

• The synchronisation of the pulsed elements in the BEAM DUMP SYSTEM with the particle free 
gap could take up to one revolution (89 µs). 

This determines the achievable response time between several 10µs and 180µs. 

1.3 Number of components 

Dealing with the large number of vital components will also be a major challenge. The following 
table gives an estimate of the number of electronic channels that indicate malfunctioning of LHC 
equipment, and may cause a beam dump. 
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Table 1   Approximate number of electronic channels that could request a beam dump. 
 

Protection for main dipole and quadrupole magnets (MB, MQ, MQM) 2000 

Protection for current leads for main dipole and quadrupole magnets (MB, MQ) 64 

Protection for current leads for MQM, MQX, and other high current magnets Some 400 

Protection for major corrector magnets 400 

Protection for current leads for orbit corrector magnets 1800 

Protection for current leads for major corrector magnets 800 

Power converters 500-800 

Beam loss monitors close to collimators Some 10 

Beam loss monitors at quadrupole magnets 3000 

Sector vacuum valves 200 

Cryogenics system (one signal for each cryostat) 40 

LHC experiments 4 

Access system Some 10 

Sum 8000-10000 

With the objective of less than one faulty ABORT / two weeks, the mean time between failure 
(MTBF) must exceed 200 years for each channel. 

1.4 Downtime 

Major accidents may cause the damage of a magnet requiring its replacement. Warming up a 
part of the machine, the repair, and the cool down will require about four weeks. Such accidents 
should be avoided by the MACHINE PROTECTION SYSTEM. 

To estimate the downtime due to less severe failures, several scenarios quite likely for the 
operation with colliding beams are considered [13]. Depending on the failure, the downtime is 
between 1.5 h and up to 7 h in case of quenching magnets (see below). 

 

A power converter failure requires a beam dump, for a circuit including magnets with negligible 

dynamic effects (no magnet quench) 

Action Time [min] 

Beam dump, stop power converter, discharge magnet energy for circuit with 

faulty power converter, clear failure of power converter 

10 

Ramp all magnets to injection current  30 

Injection of beam 20 

Ramp to top energy and preparation for physics 40 

Time until physics restarts: at least 1.5 hours  
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A power converter failure requires a beam dump, for a circuit including magnets with significant 

dynamic effects (no magnet quench) 

Action Time [min] 

Beam dump, stop power converter, discharge magnet energy for circuit with faulty 

power converter, clear failure of power converter 

10 

Switch on power converter, 2 cycles to restore the magnetic history, and ramp to 

injection current  

90 

Injection of beam 20 

Ramp to top energy and preparation for physics 40 

Time until physics restarts: at least 2.5 hours  

 

 

Beam loss monitors measure too high beam losses at top energy and request to dump the beam (no 

magnet quench) 

Action Time [min] 

Beam dump and ramp to injection current 30 

Injection of beam 20 

Ramp to top energy and preparation for physics 40 

Time until physics restarts: at least 1.5 hours  

 

 

Beam losses cause a quench of a dipole magnet during operation at top energy 

Action Time 

Beam dump, stop power converter, discharge magnet energy for 

circuit with quenched magnet and possibly other circuits 

10 min 

Cool down from increased temperature (depends on the energy 

released into the helium) to 1.9 K [14] 

3-7 hours  

Switch on power converter, 2 cycles to restore the magnetic 

history, and ramp to injection current  

90 

Injection of beam 20 

Ramp to top energy and preparation for physics 40 

Time until physics restarts: at least 5 hours  
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2 ARCHITECTURE OF THE MACHINE INTERLOCK SYSTEM 

2.1 Main objectives 

The main objectives for the MACHINE PROTECTION SYSTEMS are: 

• Protect the machine: In case of failure, the necessary steps should be taken to dump the beam 
and to dissipate the energy stored in the magnets in a safe way. 

• Protect the beam: The system should not generate beam dumps if this is not strictly necessary. 
Faulty trigger signals that lead to a beam dump should be avoided. 

• Provide the evidence: In case of beam dump or failure in the POWERING SYSTEMS, the 
messages should get to the operator. The system should support identifying the initial failure, 
also in case of multiple alarms (one initial failure that causes subsequent failures). 

• Assist improving the operation: The diagnostics for failures should be easy. The status of the 
system must be clearly presented in the control room and should be transparent to the 
operator. 

From these objectives, the principles for the architecture follows: 

• For the protection of equipment, hardwired abort links (“hard aborts”) will be used 
unconditionally if equipment could be damaged. 

• To limit the number of faulty triggers, the number of channels that may provoke an abort will be 
minimised. This will establish a reasonable compromise between the requirement for protection 
and the requirement to avoid unnecessary beam dumps. If the required reliability cannot be 
achieved otherwise, redundancy and majority voting strategies will be implemented. 

• The efficiency of the operation can be improved using “soft aborts”, possibly via computer 
links. Soft aborts can be disabled. If a soft abort is disabled or fails, there is always a second 
level of protection due to hard aborts. For example, if the cryogenic system signals that the 
temperature cannot be kept at the required level, the overall performance is improved by 
dumping the beam and discharging the circuit before a magnet would quench. This action will 
reduce the downtime.  

• To provide the evidence of a failure and assist the operator, the same structure across different 
systems in the abort chain will be used. For a failure only one abort (or two for redundancy 
reasons) will be requested, and not many. Synchronised recording of failures leading to an 
abort will be made available for later analysis (Post Mortem). 

2.2 Machine interlocks 

The architecture of the MACHINE INTERLOCK SYSTEM is derived from the layout of the LHC 
and its systems, from operational requirements and from the principles discussed above.  

• The POWERING INTERLOCK SYSTEM allows for the powering of the magnets when a number of 
conditions are met, and causes a safe dissipation of the energy stored in the magnet system in 
case of a quench or other failures.  

• The BEAM INTERLOCK SYSTEM allows beam injection if it is safe to accept beam, and requests 
a beam dump by the BEAM DUMP SYSTEM if any unsafe situation is detected.  
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• An interface between the POWERING INTERLOCK SYSTEM and the BEAM INTERLOCK SYSTEM 
ensures that the beam is dumped at the earliest possible moment for failures that would cause 
beam losses.  

• A POST MORTEM SYSTEM records data from various systems to understand the cause of a 
failure leading to a beam dump or power abort. 

2.3 Architecture of the powering interlock system 

The eight sectors in the LHC are largely independent. In each sector several cryostats are 
installed, in total about 50 cryostats and 42 DFBs (optics version 6.4) [15]. Powering of one 
electrical circuit is always limited to one cryostat (see Figure 2). 

All power converters for superconducting magnets are located in the underground powering 
areas (UA, UJ, RR). The electrical circuit includes power converters, (warm) cables from power 
converters to the current feedthroughs, the current feedthroughs from ambient temperature to about 
4.2 K (in general two for each circuit), superconducting bus bars for the current distribution, and 
finally the superconducting magnets (see Figure 3).  

The energy stored in either some or all magnets in a cryostat must be discharged in case of a 
failure. However, the energy of magnets in other cryostats does not have to be discharged. Each 
cryostat, or the assembly of a few adjacent cryostats, is considered as POWERING SUBSECTOR with 
one POWERING INTERLOCK CONTROLLER (PIC). This allows powering all circuits in one POWERING 

SUBSECTOR independent from other electrical circuits, for example during setting up and hardware 
commissioning. An example of the architecture between IP1 and IP8 is given in Figure 4. 

The eight long arc cryostats span the major part of a sector and are electrically fed from both 
sides. The power converters for the main bending magnets (MB) and main arc quadrupole magnets 
(MQ), and the energy extraction systems for the MQ magnets are installed in the even points. For 
the MB there is an energy extraction systems at each end of the arc cryostat. At the odd points 
power converters for insertion / dispersion suppresser quadrupoles and corrector magnets are 
installed. Hence the long arc cryostats needs two POWERING INTERLOCK CONTROLLERS, one on each 
side. The quench detection for main magnets in the arc cryostats comprises about 250 units 
distributed along the arc. Current loops are connecting all detectors and informing the POWERING 

INTERLOCK CONTROLLERS about a quench in one of the magnets. To power the orbit correctors, 
about 100 power converters are installed in each sector in the tunnel underneath the arc cryostat, 
which will be notified in case of a failure via the control system. 

In summary, there are about 36 POWERING INTERLOCK CONTROLLERS in the underground 
powering areas. There will be some additional POWERING INTERLOCK CONTROLLERS for the 
electrical circuits operating with magnets at room temperature. The POWERING INTERLOCK 

CONTROLLERS will be connected to the controls network. One POWERING INTERLOCK CONTROLLER 

has a functionality that is similar to the interlock system of String 2 [16]. 
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Figure 2:  CONTINUOUS CRYOSTATS in the LHC, for optics version 6.4. 
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Figure 3:  Elements of a circuit with superconducting magnets with a bi-polar power converter. 
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Figure 4: Example for the Architecture of Power and Beam Interlock System in sector 8-1. 
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2.4 Architecture of the beam interlock system 

There will be one BEAM INTERLOCK SYSTEM for the LHC. Right and left from each IP one 
BEAM INTERLOCK CONTROLLER (BIC) will be installed (see Figure 5). The controllers are connected 
by two loops (BEAM PERMIT LOOPS). When the loops are broken, the beams are extracted into the 
beam dump blocks by the BEAM DUMP SYSTEM. A computer connection to the BEAM INTERLOCK 

CONTROLLERS for monitoring, testing and post mortem analysis is required.  

The two loops distinguish between beam I and II. The system allows breaking one of the loops 
leading to a dump of only one beam, for example during injection: One beam may have been 
successfully injected. An attempt to inject the other beam leads to a stored beam with unacceptable 
beam parameters. Another example is a degraded vacuum in one beam tube, when operation with 
the other beam should still be possible. With the strategy of having a BEAM DUMP SYSTEM for each 
beam, and a BEAM PERMIT LOOP for each beam, it is possible to dump only one beam.  

In order to inject beam, the BEAM DUMP SYSTEM must be ready, all vacuum valves in the 
beam tube must be in the “open” position, magnets in the transfer line need to be powered, etc. The 
BEAM INTERLOCK CONTROLLERS ensure that these conditions are met.  

POWERING INTERLOCK CONTROLLERS report their state to a BEAM INTERLOCK CONTROLLER in 
the vicinity. 

 
Figure 5: Architecture of the beam interlock system. 
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3 POWERING INTERLOCK SYSTEM 

3.1 Powering interlock controllers 

A POWERING INTERLOCK CONTROLLER monitors the powering status of all electrical circuits for 
one POWERING SUBSECTOR. For each circuit the POWERING INTERLOCK CONTROLLER has an 
interface to the power converter and the quench protection system. Similar controllers will monitor 
the powering of all warm magnets in one half-insertion.  

Two types of electrical circuits are defined: 

• Circuits with main magnets: Circuits that include magnets with large stored energy density, for 
example all main dipoles, main arc quadrupoles and main quadrupoles in the dispersion / 
matching section (MQM). In case of a quench, the quench could travel to magnets or bus bars 
in other circuits and therefore all magnets in the cryostat will be de-excited (SUBSECTOR 

POWER ABORT). 
• Circuits with other magnets: Circuits that only include magnets with little stored energy. A 

quench of a magnet in such circuits would normally not travel to magnets in other circuits 
(CIRCUIT POWER ABORT). 

A failure in an electrical circuit will have severe or less severe consequences for the operation with 
circulating beam. These consequences could depend on the state of the accelerator (beam energy, 
intensity, …). Hence, the criticality for beam operation is defined:  

• Some circuits are essential, i.e. required for beam operation under all circumstances. In case of 
a failure, the beams are dumped. 

• Some circuits are not always required and a failure would not always generate a beam dump. 

3.1.1 Electrical circuits with main magnets causing “subsector power abort” 

The current loops (QUENCH LOOP) within the quench protection system are connected to all quench 
detectors for the main dipole and the two main quadrupole circuits in the arc cryostat. The interface 
from the QUENCH PROTECTION SYSTEM to the POWERING INTERLOCK SYSTEM is via the CIRCUIT 

QUENCH status. The POWERING INTERLOCK CONTROLLER can break the QUENCH LOOP. The interface 
to the power converter is via PC PERMIT, POWERING FAILURE, PC FAST ABORT and PC DISCHARGE 

REQUEST.  

In the following several failure scenarios are considered: 
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Step 1 Quench detector opens the MB (or the MQ) quench loop 

Step 2 Energy of the circuit is extracted by activating the 
discharge switches directly connected to the loop 

Step 3 The associated POWERING INTERLOCK CONTROLLER is 
informed, issues a PC FAST ABORT and switches the PC 

PERMIT off. 

Step 4 The POWERING INTERLOCK CONTROLLER issues a 
DISCHARGE REQUEST for the other main circuits QF and 
QD (in case of dipole quench) 

Quench of a dipole 
magnet (or MQ 
magnet) 

Step 5 All other circuits are discharged via a PC FAST ABORT 
command that links the POWERING INTERLOCK 

CONTROLLER to the power converters. For the magnets 
that require energy extraction, the power converter opens 
the dedicated extraction switch. 

 

Step 1 Power converter sends a PC DISCHARGE REQUEST to the 
POWERING INTERLOCK CONTROLLER  

Power converter 
failure requiring 
fast discharge Step 2 THE POWERING INTERLOCK CONTROLLER activates the 

discharge switch for this circuit by opening the quench 
loop (Note: for the MQX magnets in the triplet cryostat 
the heaters are fired, since the time constant for discharge 
is too long and there is no other system to extract the 
energy)  

 

Step 1 Power converter sends a POWERING FAILURE command 
to the POWERING INTERLOCK CONTROLLER  

Power converter 
failure requiring 
slow discharge Step 2 THE POWERING INTERLOCK CONTROLLER takes away the 

permission to power this circuit (PC PERMIT=OFF) 
 

Step 1 A number of selected heaters are fired to safely dissipate 
the energy of the magnets. A large amount of helium 
would be released. Therefore such event should only 
occur in emergency situations, and should never be 
accidentally triggered. This failure is handled within the 
QUENCH PROTECTION SYSTEM. 

In case of a failure 
of a discharge 
switch that does not 
open after a request 
(SWITCH OPEN 

FAILURE) 

Step 2 THE POWERING INTERLOCK CONTROLLER stops the power 
converter since the quench loop is broken. 

 

Step 1 The breakers will be automatically opened and the energy 
discharged. 

Internal failure of 
the discharge switch 

Step 2 A signal is send to the POWERING INTERLOCK 

CONTROLLER through the quench loop interface. 
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3.1.2 Electrical circuits with auxiliary magnets causing “circuit power abort” 

Such electrical circuits require a QUENCH STATUS, PC PERMIT,  POWERING FAILURE and PC FAST 

ABORT. 

If one of the quench detectors for the circuit indicates a quench, the QUENCH STATUS is set to fault 
state and the power converter is switched off via the POWERING INTERLOCK CONTROLLER (PC FAST 

ABORT). If the circuit has an extraction resistor, the energy is extracted. 

Magnets powered in other electrical circuits do not have to be discharged. 

3.1.3 Interfaces of the powering interlock controllers to other systems  

Interfaces to the beam interlock controller 

From each POWERING INTERLOCK CONTROLLER two signals are input to a BEAM INTERLOCK 

CONTROLLER: ESSENTIAL CIRCUITS OK and AUXILIARY CIRCUITS OK. 

Any failure in the POWERING SYSTEM causes the ESSENTIAL CIRCUITS OK signal or the AUXILIARY 

CIRCUITS OK signal to the BEAM INTERLOCK CONTROLLER to become false. Internal readable jumper 
or memory settings in the POWERING INTERLOCK CONTROLLER determine, whether the electrical 
circuit in question is considered “essential” for operation with beam.  

A failure in one of the main magnets, such as dipole or quadrupole magnet or in some of other 
magnets, would cause a total loss of beam. In case of failure, the signal ESSENTIAL CIRCUITS OK goes 
to fault and causes a dump of the beams. 

A failure in a circuit with a corrector magnet, such as spool piece, does not necessarily cause beam 
loss. In case of such failure, only the signal AUXILIARY CIRCUITS OK becomes false.  

The definition if a circuit is considered as essential will be done in the future. 

Interfaces to power converters and quench protection system 

Figure 6 sketches the complex example of a long arc cryostat with two POWERING INTERLOCK 

CONTROLLERS, one on each side of the arc. The signals/links per electrical circuit for a POWERING 

INTERLOCK CONTROLLER are summarised in table 2. A signal can be logical “1” or “0”.  Signals can 
be AC, voltage, or current. For an AC signal with a defined frequency, “1” corresponds to the 
presence of the AC signal and “0” corresponds to either no signal or a signal with a different 
frequency. For a voltage, “1” corresponds to high (defined voltage within a given range) and “0” 
corresponds to a voltage outside the defined range. For a current, circulating current corresponds to 
“1”; no current corresponds to “0”. 
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The hardwired signals between the components in each electrical circuit and the POWERING 

INTERLOCK CONTROLLER are: 

1. QUENCH STATUS  
2. POWERING FAILURE 
3. PC PERMIT 
4. PC FAST ABORT 
5. PC DISCHARGE REQUEST (only from PCs for the RB, RQ and RQX circuits) 

Interfaces to the control system 

The POWERING INTERLOCK CONTROLLER is connected to the control system. Status and memory are 
readable at any time. Interfaces via the control system are with the cryogenic, quench protection, 
controls, access and timing systems.  

3.2 Loops and Links 

Three types of links are required.  

• Point to point connections have one source and one receiver. 
• Current loops are used to connect many sources to a few receivers.  
• A field-bus can be used to create a software-based link in less critical cases, in particular to 

give permission for powering etc. 
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Figure 6:  Powering interlock controller for one long arc cryostat.
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Table 2   List of the signal names for the POWERING INTERLOCK CONTROLLERS 
 
 
 Signal Name 

 
Meaning if 
signal = I 

Meaning if 
signal = 0 

From To Number  

1 CIRCUIT 
QUENCH 

No quench 
detected 

Quench QPS PIC 1 per electrical circuit 

2 POWERING 
FAILURE 

PC and 
auxiliaries OK 

Failure of PC or 
other element 

PC PIC 1/circuit 

3 PC PERMIT  PC may start PC start inhibit  / 
slow abort 

PIC PC 1/circuit 

4 PC FAST 
ABORT  

PC operation 
permitted 

PC fast off PIC PC 1/circuit 

5 PC 
DISCHARGE 
REQUEST 

PC OK, no 
request for 
fast discharge 

PC failure that 
requires fast 
discharge  

PC PIC 1 per PC for RB, RQF, 
RQD and RQX (fire 
heaters) 

6a PIC 
DISCHARGE 
REQUEST  

No action of 
discharge 
switch 

Discharge switch 
open request 

PIC Discharge 
Switch 

3 for each even arc, 1 
for odd arc, for RB 
and RQF / RQD 

6b PIC 
DISCHARGE 
REQUEST  

No firing of 
heaters  

Fire heaters PIC QPS One for each triplet to 
fire quench heaters,  
(RQX) 

7 AUXILIARY 
CIRCUITS OK 

All auxiliary 
circuits OK 

Failure in at least 
one auxiliary 
circuit 

PIC BIC 1 per PIC 

8 ESSENTIAL 
CIRCUITS OK 

All  circuits 
essential for 
beam OK 

Failure in at least 
one essential 
circuit 

PIC BIC 1 per PIC 

9 CRYO OK Cryogenics 
ready for 
powering 

Cryogenics 
Failure 

Cryogenics PIC 1 per PIC 

10 DATA I/O   Control 
System 

PIC 1 per PIC 

11 TIMING 
SYSTEM  

  Timing 
System 

PIC 1 per PIC 

12 QUENCH 
PROTECTION 
PERMIT  

Quench 
protection 
system ready 

Quench 
Protection system 
not ready 

QPS PIC 1 per PIC 

 
 



 

 20

3.2.1 Quench loops 

For electrical circuits that include magnets with large stored energy there is one current loop 
connecting all quench detectors and the discharge switches. There is one current loop for the RB 
circuit and one current loop for both RQ circuits, since both circuits will be discharged in case of a 
quench of other failure. In case of a quench, the loop informs the equipment connected to the loop, 
such as discharge switches and POWERING INTERLOCK CONTROLLER. The time between the detection 
of a quench and the breaking of the loop is about 20 ms. The POWERING INTERLOCK CONTROLLER 

can give a signal to break the current loops to discharge the circuits, if required. 

3.2.2 Heater activation link 

If a discharge switch fails to open, the stored magnetic energy is distributed across a large fraction of 
the magnets by activating a large number of quench heaters. The command is issued by the control 
electronics of the extraction switches. The stored energy is transferred into the helium, possibly 
loosing large amount of helium. Hence, this link should not be activated accidentally. The POWERING 

INTERLOCK CONTROLLER cannot issue this command. In one sector two links for circuits with main 
dipole magnets and one link for both quadrupole circuits will be available. 

3.2.3 Link to the power converters for orbit corrector magnets 

Failure of an orbit corrector: The failure of an orbit corrector magnet that significantly deflects the 
beam can lead to beam losses and to a quench. The beam loss monitor systems are being designed 
to measure the increased losses and break the BEAM PERMIT LOOP. However, another mechanism of 
breaking to inform the interlock system might be required. The status of all power converters will be 
available every 10 ms. If it should be required to dump the beam if one of the corrector magnet 
power converters goes to fault state, this could be done via software. Details and the time constants 
that are required need to be defined. 

Protection of current leads for orbit corrector magnets: The current leads for the orbit 
corrector magnets are made out of copper. To limit the heat load, the leads are rather thin and 
thermalised. In case of a thermal runaway, the power converters must be switched off. Therefore an 
electronic module inside the power converter measures the voltage across the leads, and if the 
voltage exceeds a threshold, the power converter is switched off. 

Power permit for power converter: The power converters for orbit corrector magnets in the long 
arc cryostat need to know the status of the cryogenics and the main magnet circuits. Permission for 
powering can only be given if the magnets are cold. After a quench in a main magnet (MB or MQ) 
the power converters for the corrector magnets should also be switched off. The response time is not 
critical (some 100 ms). Since every corrector power converter/ magnet assembly is designed to 
switch off after a quench of the corrector magnet by itself, a dedicated hardware link to each power 
converter is not required. The information could be exchanged using existing elements of the control 
system. 
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4 BEAM INTERLOCK SYSTEM 

4.1 Beam interlock controllers 

The BEAM INTERLOCK CONTROLLER combines the messages from different systems to one 
output: BEAM PERMIT, yes or no. The transition of the BEAM PERMIT state from latter YES to NO 
automatically triggers the BEAM DUMP REQUEST. 

The BEAM INTERLOCK CONTROLLER interrupts a pulse train (possibly with a frequency of 10 
MHz) transmitted along an optical fibre of the BEAM PERMIT LOOP in case of a failure condition. The 
absence of the pulse train will be interpreted as no BEAM PERMIT. 

Two types of input signals from the equipment systems are possible: 

• Unconditional inputs: if such inputs are in fault state, the pulse train will be interrupted. Such 
inputs cannot be disabled via the control system. 

• Conditional inputs: if such inputs are in fault state, the pulse train might be interrupted, 
depending on other conditions defined by the machine status. Such inputs can be disabled via 
the control system. 

• The pulse train is produced in one BEAM INTERLOCK CONTROLLER only. The setting of the 
jumper (master/slave) is visible at the front panel and readable from the computer. 

All input states and the output state are continuously sampled and stored into a memory at a 
rate to be defined. The BEAM DUMP REQUEST and the post mortem trigger freeze the state of the 
memory. It can be considered to employ separate memories for the two cases. 

All input states and the output state are displayed on the front panel.  

The control system enables/disables the conditional inputs, senses the memory state (frozen or 
life) and performs the readout.  

Table 3 summarises the inputs of the BEAM INTERLOCK CONTROLLER that will be updated 
according to the definition of the POWERING SUBSECTORS, to be discussed and confirmed later. 

Figure 7 depicts symbolically a BEAM INTERLOCK CONTROLLER with all inputs and outputs. 
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Table 3   Input signals to the BEAM INTERLOCK CONTROLLER (preliminary) 
 
Channel Name Possibility to 

disable input 
1 RF system Yes 
2 Loss monitors around the ring Yes 
3 Beam excursion   Yes 
4 Spare Yes 
5 Spare Yes 
6 Spare Yes 
7 Spare Yes 
8 Arc powering subsector, auxiliary circuits ok Yes 
9 Triplet powering subsector, auxiliary circuits ok Yes 
10 Spare, depending on powering subsectors Yes 
11 Spare Yes 
12 Spare Yes 
13 Spare Yes 
14 Spare Yes 
15 Spare Yes 
16 Experiment OK No 
17 Loss monitors at collimators No 
18 Collimators  No 
19 Access system OK No 
20 Extraction system OK No 
21 Beam Injection Permit No 
22 Vacuum valves beam 1 OK No 
23 Vacuum valves beam 2 OK No 
24 Arc powering subsector, essential circuits ok No 
25 Triplet powering subsector, essential circuits ok No 
26 Spare, depending on powering subsectors No 
27 Spare No 
28 Spare No 
29 Spare No 
30 Spare No 
31 Warm magnets No 
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Figure 7:  Example for one of the Beam interlock controllers. 
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4.1.1 Inputs from the powering interlock controllers 

Each POWERING INTERLOCK CONTROLLER sends two signals to the BEAM INTERLOCK CONTROLLER 

(ESSENTIAL CIRCUITS OK, AUXILIARY CIRCUITS OK). 

If the signal ESSENTIAL CIRCUITS OK goes to the fault state, the beam is dumped. If the signal 
AUXILIARY CIRCUITS OK will go to a fault state, this would not necessarily require a beam dump. The 
required action depends on the machine status. If, for example, the beam intensity is small, there is no 
need to dump the beams (conditional beam dump). 

4.1.2 Inputs from the beam dump system  

If the BEAM DUMP SYSTEM is not ready, injection of beam must be inhibited. A breakdown of the 
BEAM DUMP SYSTEM would present a major hazard, if beams were circulating. Beams must be 
dumped, as long as the system is still operational. It is not possible to mask the signal.  

4.1.3 Input from LHC experiments 

The BEAM INTERLOCK CONTROLLER accepts a signal from the LHC experiments. The details will be 
discussed with the experiments. With physics operation (top energy, luminosity, beams stable) 
experiments might require moving devices closer to the beams. If such device is not completely in 
OUT position, any injection must be strictly inhibited. 

4.1.4 Input from RF system and transverse feedback 

If the RF system does not work correctly, the beam will debunch. The beam dump can not be 
synchronised with the abort gap in the bunch train and intolerable beam losses would be generated 
during the dump. A signal from the RF system is required to dump the beam, if debunching is 
anticipated. The time constant for debunching is in the order of several 100 ms [12]. 

A failure of the transverse damper might cause a beam loss within very short time. An incorrect 
operation of the transverse feedback must trigger a beam dump. The details have to be finalised.  

4.1.5 Input from resistive magnet system  

A failure of the warm magnets in the insertions could occur due to a failure of the magnet itself, for 
example due to overheating of the coils or a short circuit between turns, or due to a failure of the 
power converter. The magnets will be equipped with temperature sensors. When the temperature 
exceeds the permissible value, the beam is dumped and powering is aborted. One dedicated 
POWERING INTERLOCK CONTROLLER for the each IP could monitor the power converters for warm 
magnets. Since the power converters are located in the surface buildings, the controller could also be 
installed in the surface building. Another option is to include the interlocks for electrical circuits with 
warm magnets into a POWER INTERLOCK CONTROLLER for the cold magnets in the vicinity. 
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4.1.6 Input from the beam loss monitor system 

Beam loss monitors will be distributed around the ring, with a set of monitors close to each 
quadrupole, as well as monitors close to the collimators for beam cleaning. The signature of a beam 
loss that should request a beam dump remains to be established.  

4.1.7 Input from access system 

The ACCESS SYSTEM is a system for the personal safety that needs to follow legal requirements. It 
needs to be independent from the equipment protection. However, there is an interface between the 
state of the ACCESS SYSTEM and the actions to be taken by the MACHINE INTERLOCK SYSTEM. The 
BEAM INTERLOCK CONTROLLER will automatically request a beam dump in case of an access 
violation. A separate link from the ACCESS SYSTEM to the BEAM DUMP SYSTEM is required that is not 
part of the MACHINE INTERLOCK SYSTEM.  

4.1.8 Other inputs 

There will be some elements to prevent the accidental injection and circulation of beam, such as 
valves in the beam tubes, collimators and some magnets in the transfer line. Such systems are 
activated if access to the tunnel or the galleries should be given, or after an access violation. 
Concerning valves, collimators and detectors, injection is inhibited unless they are moved out of the 
beam.  

4.1.9 Outputs 

The 10 MHz pulse train that connects the BEAM INTERLOCK CONTROLLERS is one of the outputs. 
There might be an output required to inform other systems about the status of the BEAM PERMIT 

LOOP. Finally, there will also be a connection to the computer network. 

4.2 Beam permit loop 

Two such loops run around the entire accelerator. The signal needs to be transmitted as fast as 
possible to the BEAM DUMP SYSTEMS. The loop is connected to 16 BEAM INTERLOCK 

CONTROLLERS around the LHC. Hence, a transmission using optical fibres is proposed. 

4.3 Computer link 

The BEAM INTERLOCK CONTROLLER is connected to the control system that provides the 
machine status and the timing information, and reads out the post mortem data. 

4.4 Beam abort from the control system   

In order to protect equipment from serious damage, hardware interlocks are used. For 
increasing the operational efficiency, soft aborts are suggested that are generated by software and 
transmitted via the computer links. For example, in case of a technical problem in one cryo-plant the 
cooling of the cryostats cannot continue for more than, say, several minutes. In order to prevent 
magnets from quenching, the information is sent to the control room. This allows the operators to 
dump the beams and discharge the magnets in this cryostat. If this action would not be taken, the 
hardwired protection systems would still protect the equipment. 

Such soft aborts do not require specific hardware and will be discussed in a future paper. 
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5 IDEAS FOR THE HARDWARE REALISATION 

5.1 Signal transmission 

Some general rules need to be applied to all electrical and optical signals, in order to ensure 
that the interlock system is fail-safe. The presence of a signal represents the safe state (there will be 
one exception – the signal for firing many heaters if the energy extraction should fail). 

• There are several options to exchange electrical signals between systems:  

1. generated by a low impedance voltage source, 
2. generated by a current source with a large compliance to accommodate resistive voltage 

drops and opto-couplers (current loop),  
3. differential (square waves, RS485 compliant) 
4. A safe condition can be signalled by the presence of a square wave (1 kHz – 10 MHz) or 

a defined current within a voltage range. The absence of the square wave or of the 
connection is considered as a failure. Note that a second frequency or a current with a 
voltage outside a certain range can be used to indicate a TEST state. 

• Cables must be shielded. The shield shall be tied to ground at both sides. 
• Alternatively industrial compatible logic (24 V) as used by PLCs (Programmable Logic 

Controllers) can be considered. 
• Optical fibre signals need to be square waves (10 MHz or similar). The absence of the square 

wave is considered as a failure. 

For the signal exchange between POWERING INTERLOCK CONTROLLER and other systems one 
standard will be defined that becomes compulsory. The signal exchange between BEAM INTERLOCK 

CONTROLLER and other systems must be faster since the beam need to be dumped in a few turns, 
and an appropriate standard will be defined.  

5.2 Beam interlock system 

The system consists of 16 clusters (VME Crates or another standard, to be defined). All crates 
are connected to regularly serviced uninterruptible power supplies (UPS). The power supplies for the 
interlock electronic have to consist of redundant pairs, connected together with diodes, because 
power electronics is most likely to fail. Their status must be visible for the control system. 

The crate controllers are connected through a field-bus and/or Ethernet to the control system. 
The crate controllers contain always a mirror of the current states of all components connected to the 
particular crate and of its history. The time-steps for the history recording depend on the particular 
data channel. The history recording stops with some delay after the POST MORTEM TRIGGER. 

Users of equipment connected to the MACHINE INTERLOCK SYSTEM are responsible for the 
integrity of their signals up to the input connector or from the output connector of the interlock 
equipment, including the cables. 

The inputs for the BEAM INTERLOCK CONTROLLER must be fail-safe and reliable.  
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5.3 Beam permit loop 

The BEAM PERMIT LOOP must act fast on the dump kickers. We propose to use two optical 
fibres, one for each beam. This ensures that the dump signal reaches the kickers after at most one 
turn after the loss at one of the two cleaning sections. Spare fibres are required. 

The link will only be used for the BEAM PERMIT signal despite the available bandwidth, 
assuming that simplicity results in enhanced reliability. A 10 MHz (or similar frequency) square wave 
signal is sent from the controller IP6L (close to the beam dump) clockwise for one beam around the 
ring, respectively counter-clockwise.  

5.4 Powering interlock controller 

Decision logic combined with a computer (VME or PLC) communication port receives and 
transmits status and commands via input/output sections. As a controller can have several ten I/O 
subsections, it might be advantageous to arrange the I/O sections outside the crate with the 
processor. 

6 INVENTORY OF THE MACHINE INTERLOCK SYSTEM 

An estimate for the inventory of the MACHINE INTERLOCK SYSTEM is:  

• sixteen (16) BEAM INTERLOCK CONTROLLERS, 
• a global fast link between the BEAM INTERLOCK CONTROLLERS and the BEAM DUMP SYSTEM 

with at least two channels,  
• between 30 and 40 POWERING INTERLOCK CONTROLLERS, 
• several POWERING INTERLOCK CONTROLLERS for the warm magnets, with the details to be 

worked out. 

7 CONCLUSIONS  

In this paper the architecture of the interlock system for the protection of LHC equipment is 
discussed, and ideas for the realisation are presented. Since the first application is for the hardware 
commissioning of one LHC sector in 2004, the POWERING INTERLOCK SYSTEM is required first. An 
Engineering Specification for this system will be written, followed by a specification for the BEAM 

INTERLOCK SYSTEM. The interfaces between these interlocks systems and other systems will be 
discussed in the Working Group on Machine Protection, and specified in the Engineering 
Specifications. The realisation of the system, using VME, PLCs, or another standard, will be decided 
later. 

Other open questions that will be addressed in the future: 

• Definition of the POWERING SUBSECTORS and conditions for access. 
• Definition of the machine status. 
• Definition of the post mortem recording. 
• Beam loss monitor systems and conditions to dump the beam. 
• What circuits should be considered to be essential for beam operation? 
• Definition of test modes for both, beam interlock and powering interlock systems. 
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APPENDIX 
 

GLOSSARY 

General names of systems  Description 

MACHINE PROTECTION SYSTEMS Generic Name for the systems discussed here dedicated 
to the protection of the LHC 

 
MACHINE INTERLOCK SYSTEM 

Generic Name for the INTERLOCK SYSTEMS discussed 
here (beam interlock and powering interlock systems) 

 
BEAM INTERLOCK SYSTEM 
 

System including electronics and optical links to enable 
BEAM PERMIT and issuing BEAM DUMP REQUESTS  

 
POWERING INTERLOCK SYSTEM 

 
System to enable and abort powering of electrical circuits  
(POWER PERMIT and POWER ABORT) 

 
BEAM DUMP SYSTEM 
 

 
Includes all elements that are required to dump the beam 
after receiving a BEAM DUMP REQUEST 

 
POWER CONVERTER SYSTEM 

 
Includes all power converters  

 
POWERING SYSTEM 

Includes all power converters and all elements of the 
circuits to connect a power converter to the current leads 
on the DFBs 

 
BEAM LOSS MONITOR SYSTEM 
 

 
System of beam loss monitors present along the arcs and 
the insertions 

 
ACCESS SYSTEM 

System to provide access for people to enter into the 
LHC underground areas, for protection of personnel 

 
QUENCH PROTECTION SYSTEM 
 

System that protects and monitors all superconducting 
elements in the LHC, for protection of equipment 

 
 

Other names Description 

 
ELECTRICAL CIRCUIT 

Includes all elements in one circuit to power magnets: 
power converters, warm cables, feedthroughs from warm 
to cold, superconducting busbars and magnets 

 
POWERING SUBSECTOR 

Limited stretch of the machine that can be independently 
powered 
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Name of hardware LHC Naming 
Convention 

Description 

 
POWER CONVERTER 

 
RP 

 
Power converter to power the magnets in 
an electrical circuit 

 
BEAM INTERLOCK 
CONTROLLER 

 
CIBC 

 
16 BEAM INTERLOCK CONTROLLERS are 
installed in the LHC, located left and right 
from each IP  

 
POWERING INTERLOCK 
CONTROLLER 

 
CIPC 

For each POWERING SUBSECTOR there is 
one such CONTROLLER, except for the arc 
cryostat with two of such controllers (right 
and left) 

 
DISCHARGE SWITCH 

 
DQS 

Switch in order to extract energy, installed 
in circuits for MB, MQF, MQD and many 
of the 600 A circuits 

 
 

Name of a state Description 

 
CIRCUIT POWER ABORT 

 
State for each individual electrical circuit in a powering 
subsectors, if power abort for the circuit is activated 

 
SUBSECTOR POWER ABORT 
 

 
A power abort for all electrical circuits in one of the 
powering subsectors is activated 

 
BEAM PERMIT 

YES: Beam(s) are allowed to be injected  / to circulate. 
NO: Beam(s) are not allowed to be injected  / to circulate – 
the transition from YES to NO generates a BEAM DUMP 
REQUEST 
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Signals From To Remarks 

ESSENTIAL 
CIRCUITS OK 

CIPC CIBC All electrical circuits in the powering 
subsector that are essential for beam 
operation are operational  

AUXILIARY 
CIRCUITS OK 

 
CIPC 

 
CIBC 

All auxiliary electrical circuits in one 
powering subsector are operational 
 

PC PERMIT CIPC Power 
converter 

Permit to power converter, ok state. If not 
present => Slow power converter abort  

PC FAST ABORT CIPC Power 
converter 

Fast power converter abort, fault state 

POWERING 
FAILURE 

Power 
converter 

CIPC Power converter or any circuit component 
at warm (DC cables, water, etc.) not ok, 
fault state 

PC DISCHARGE 
REQUEST 

Power 
converter 

CIPC Powering failure that does require fast 
discharge of the energy in the circuit 

PIC DISCHARGE 
REQUEST  

 
CIPC 

Quench 
Protection 

System 

Signal from powering interlock controller to 
quench protection system to discharge one 
of the main circuits (RB, RQ) 

CIRCUIT QUENCH Quench 
Protection 

System 

CIPC Signal from quench protection system for 
every electrical circuit if there is a quench in 
the circuit 

QUENCH  
PROTECTION 
PERMIT 

Quench 
Protection 

System 

CIPC Protection system ready for powering, 
heaters charged, etc., via network. When it 
disappears during powering it will not 
generate any power abort 

CRYOGENICS OK  Cryo CIPC Cryogenics system ready to power all 
elements in one powering subsector 

BEAM DUMP 
REQUEST 

 
CIBC 

BEAM DUMP 
SYSTEM 

One or both beams are aborted by 
breaking the BEAM PERMIT LOOP from 
one of the 16 beam interlock controllers  

 
 

Loops / Links Abbreviation Remarks 

 
QUENCH LOOP 

 
DQPAL 

 
Current loop for the main circuits in the quench 
protection system 

HEATER 
ACTIVATION LINK 

 
DQHAL 

Current loop that activates selected heaters if 
energy extraction fails 

 
BEAM PERMIT 
LOOP 

 
CPBPL 

 
Link with optical fibre between the set of 16 
beam permit controllers  

 
 


