2,615 research outputs found
Genomic variability in Potato virus M and the development of RT-PCR and RFLP procedures for the detection of this virus in seed potatoes
Potato virus M (PVM, Carlavirus) is considered to be one of the most common potato viruses distributed worldwide. Sequences of the coat protein (CP) gene of several Canadian PVM isolates were determined. Phylogenetic analysis indicated that all known PVM isolates fell into two distinct groups and the isolates from Canada and the US clustered in the same group. The Canadian PVM isolates could be further divided into two sub-groups. Two molecular procedures, reverse transcription - polymerase chain reaction (RT-PCR) and restriction fragment length polymorphism (RFLP) were developed in this study for the detection and identification of PVM in potato tubers. RT-PCR was highly specific and only amplified PVM RNA from potato samples. PVM RNAs were easily detected in composite samples of 400 to 800 potato leaves or 200 to 400 dormant tubers. Restriction analysis of PCR amplicons with MscI was a simple method for the confirmation of PCR tests. Thus, RT-PCR followed by RFLP analysis may be a useful approach for screening potato samples on a large scale for the presence of PVM
Analysis of the Brinkman-Forchheimer equations with slip boundary conditions
In this work, we study the Brinkman-Forchheimer equations driven under slip
boundary conditions of friction type. We prove the existence and uniqueness of
weak solutions by means of regularization combined with the Faedo-Galerkin
approach. Next we discuss the continuity of the solution with respect to
Brinkman's and Forchheimer's coefficients. Finally, we show that the weak
solution of the corresponding stationary problem is stable
Non-Equilibrium Large N Yukawa Dynamics: marching through the Landau pole
The non-equilibrium dynamics of a Yukawa theory with N fermions coupled to a
scalar field is studied in the large N limit with the goal of comparing the
dynamics predicted from the renormalization group improved effective potential
to that obtained including the fermionic backreaction. The effective potential
is of the Coleman-Weinberg type. Its renormalization group improvement is
unbounded from below and features a Landau pole. When viewed self-consistently,
the initial time singularity does not arise. The different regimes of the
dynamics of the fully renormalized theory are studied both analytically and
numerically. Despite the existence of a Landau pole in the model, the dynamics
of the mean field is smooth as it passes the location of the pole. This is a
consequence of a remarkable cancellation between the effective potential and
the dynamical chiral condensate. The asymptotic evolution is effectively
described by a quartic upright effective potential. In all regimes, profuse
particle production results in the formation of a dense fermionic plasma with
occupation numbers nearly saturated up to a scale of the order of the mean
field. This can be interpreted as a chemical potential. We discuss the
implications of these results for cosmological preheating.Comment: 36 pages, 14 figures, LaTeX, submitted to Physical Review
The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: selecting emission line galaxies using the Fisher discriminant
We present a new selection technique of producing spectroscopic target
catalogues for massive spectroscopic surveys for cosmology. This work was
conducted in the context of the extended Baryon Oscillation Spectroscopic
Survey (eBOSS), which will use ~200 000 emission line galaxies (ELGs) at
0.6<zspec<1.0 to obtain a precise baryon acoustic oscillation measurement. Our
proposed selection technique is based on optical and near-infrared broad-band
filter photometry. We used a training sample to define a quantity, the Fisher
discriminant (linear combination of colours), which correlates best with the
desired properties of the target: redshift and [OII] flux. The proposed
selections are simply done by applying a cut on magnitudes and this Fisher
discriminant. We used public data and dedicated SDSS spectroscopy to quantify
the redshift distribution and [OII] flux of our ELG target selections. We
demonstrate that two of our selections fulfil the initial eBOSS/ELG redshift
requirements: for a target density of 180 deg^2, ~70% of the selected objects
have 0.6<zspec<1.0 and only ~1% of those galaxies in the range 0.6<zspec<1.0
are expected to have a catastrophic zspec estimate. Additionally, the stacked
spectra and stacked deep images for those two selections show characteristic
features of star-forming galaxies. The proposed approach using the Fisher
discriminant could, however, be used to efficiently select other galaxy
populations, based on multi-band photometry, providing that spectroscopic
information is available. This technique could thus be useful for other future
massive spectroscopic surveys such as PFS, DESI, and 4MOST.Comment: Version published in A&
Epidermal Growth Factor–PEG Functionalized PAMAM-Pentaethylenehexamine Dendron for Targeted Gene Delivery Produced by Click Chemistry
Aim of this study was the site-specific conjugation of an epidermal growth factor (EGF)-polyethylene glycol (PEG) chain by click chemistry onto a poly(amido amine) (PAMAM) dendron, as a key step toward defined multifunctional carriers for targeted gene delivery. For this purpose, at first propargyl amine cored PAMAM dendrons with ester ends were synthesized. The chain terminal ester groups were then modified by oligoamines with different secondary amino densities. The oligoamine-modified PAMAM dendrons were well biocompatible, as demonstrated in cytotoxicity assays. Among the different oligoamine-modified dendrons, PAMAM-pentaethylenehexamine (PEHA) dendron polyplexes displayed the best gene transfer ability. Conjugation of PAMAM-PEHA dendron with PEG spacer was conducted via click reaction, which was performed before amidation with PEHA. The resultant PEG-PAMAM-PEHA copolymer was then coupled with EGF ligand. pDNA transfections in HuH-7 hepatocellular carcinoma cells showed a 10-fold higher efficiency with the polyplexes containing conjugated EGF as compared to the ligand-free ones, demonstrating the concept of ligand targeting. Overall gene transfer efficiencies, however, were moderate, suggesting that additional measures for overcoming subsequent intracellular bottlenecks in delivery have to be taken
Directed self-organization of graphene nanoribbons on SiC
Realization of post-CMOS graphene electronics requires production of
semiconducting graphene, which has been a labor-intensive process. We present
tailoring of silicon carbide crystals via conventional photolithography and
microelectronics processing to enable templated graphene growth on
4H-SiC{1-10n} (n = 8) crystal facets rather than the customary {0001} planes.
This allows self-organized growth of graphene nanoribbons with dimensions
defined by those of the facet. Preferential growth is confirmed by Raman
spectroscopy and high-resolution transmission electron microscopy (HRTEM)
measurements, and electrical characterization of prototypic graphene devices is
presented. Fabrication of > 10,000 top-gated graphene transistors on a 0.24 cm2
SiC chip demonstrates scalability of this process and represents the highest
density of graphene devices reported to date.Comment: 13 pages, 5 figure
Light scattering from disordered overlayers of metallic nanoparticles
We develop a theory for light scattering from a disordered layer of metal
nanoparticles resting on a sample. Averaging over different disorder
realizations is done by a coherent potential approximation. The calculational
scheme takes into account effects of retardation, multipole excitations, and
interactions with the sample. We apply the theory to a system similar to the
one studied experimentally by Stuart and Hall [Phys. Rev. Lett. {\bf 80}, 5663
(1998)] who used a layered Si/SiO/Si sample. The calculated results agree
rather well with the experimental ones. In particular we find conspicuous
maxima in the scattering intensity at long wavelengths (much longer than those
corresponding to plasmon resonances in the particles). We show that these
maxima have their origin in interference phenomena in the layered sample.Comment: 19 pages, 12 figure
Strong Casimir force reduction through metallic surface nanostructuring
The Casimir force between bodies in vacuum can be understood as arising from
their interaction with an infinite number of fluctuating electromagnetic
quantum vacuum modes, resulting in a complex dependence on the shape and
material of the interacting objects. Becoming dominant at small separations,
the force plays a significant role in nanomechanics and object manipulation at
the nanoscale, leading to a considerable interest in identifying structures
where the Casimir interaction behaves significantly different from the
well-known attractive force between parallel plates. Here we experimentally
demonstrate that by nanostructuring one of the interacting metal surfaces at
scales below the plasma wavelength, an unexpected regime in the Casimir force
can be observed. Replacing a flat surface with a deep metallic lamellar grating
with sub-100 nm features strongly suppresses the Casimir force and for large
inter-surfaces separations reduces it beyond what would be expected by any
existing theoretical prediction.Comment: 11 pages, 8 figure
- …