982 research outputs found

    Identification of inclusions in lung tissue with a Raman microprobe

    Get PDF
    Inhaled particles smaller than 4 Ī¼m can cause damage to lung tissue, a disease called silicosis. We present an investigation on the use of a Raman microspectrometer for the identification of inclusions in lung tissue. We measured Raman spectra of such inclusions in lung tissue of a patient whose probable cause of death was silicosis. Most of the inclusions we could identify were calcite particles

    From the Heart of The Ghoul: C and N Abundances in the Corona of Algol B

    Full text link
    Chandra Low Energy Transmission Grating Spectrograph observations of Algol have been used to determine the abundances of C and N in the secondary star for the first time. The analysis was performed relative to similar observations of an adopted "standard" star HR 1099. It is demonstrated that HR 1099 and Algol are coronal twins in many respects and that their X-ray spectra are very similar in nearly all details, except for the observed strengths of C and N lines. The H-like transitions of C and N in the coronae of Algol and HR 1099 demonstrate that the surface abundances of Algol B have been strongly modified by CN-processing, as shown earlier by Schmitt & Ness (2002). It is found that N is enhanced in Algol B by a factor of 3 compared to HR 1099. No C lines are detected in the Algol spectrum, indicating a C depletion relative to HR 1099 by a factor of 10 or more. These C and N abundances indicate that Algol B must have lost at least half of its initial mass, and are consistent with predictions of evolutionary models that include non-conservative mass transfer and angular momentum loss through magnetic activity. Little or no dredge-up of material subjected to CN-processing has occurred on the subgiant component of HR 1099. It is concluded that Fe is very likely depleted in the coronae of both Algol and HR 1099 relative to their photospheres by 0.5 dex, and C, N and O by 0.3 dex. Instead, Ne is enhanced by up to 0.5 dex.Comment: 17 pages, 4 figures, ApJ accepte

    Mapping subsurface drainage in agricultural areas using a frequency-domain ground penetrating radar

    Get PDF
    Artificial subsurface drainage systems are installed in agricultural areas to remove excess water and convert poorly naturally drained soils into productive cropland. Some of the most productive agricultural regions in the world are a result of subsurface drainage practices. Drain lines provide a shortened pathway for the release of nutrients and pesticides into the environment, which presents a potentially increased risk for eutrophication and contamination of surface water bodies. Knowledge of drain line locations is often lacking. This complicates the understanding of the local hydrology and solute dynamics and the consequent planning of mitigation strategies such as constructed wetlands, saturated buffers, bioreactors, and nitrate and phosphate filters. In addition, accurate knowledge of the existing subsurface drainage system is required in designing the installation of a new set of drain lines to enhance soil water removal efficiency. The traditional methods of drainage mapping involve the use of tile probes and trenching equipment which are time-consuming, tiresome, and invasive, thereby carrying an inherent risk of damaging the drain pipes. Non-invasive geophysical sensors provide a potential alternative solution to the problem. Previous research has focused on the use of time-domain ground penetrating radar (GPR) with variable success depending on local soil and hydrological conditions and the center frequency of the specific equipment used. For example, 250 MHz antennas proved to be more suitable for drain line mapping. Recent technological advancements enabled the collection of high-resolution spatially exhaustive data. In this study, we present the use of a stepped-frequency continuous wave (SFCW) 3D-GPR (GeoScope Mk IV 3D-Radar with DXG1820 antenna array) mounted in a motorized survey configuration with real-time georeferencing for subsurface drainage mapping. The 3D-GPR system offers more flexibility for application to different (sub)surface conditions due to the coverage of wide frequency bandwidth (60-3000 MHz). In addition, the wide array swathe of the antenna array (1.5 m covered by 20 measurement channels) enables effective coverage of three-dimensional (3D) space. The surveys were performed on twelve different study sites with various soil types with textures ranging from sand to clay till. While we achieved good success in finding the drainage pipes at five sites with sandy, sandy loam, loamy sand and organic topsoils, the results at the other seven sites with more clay-rich soils were less successful. The high attenuation of electromagnetic waves in highly conductive clay-rich soils, which limits the penetration depth of the 3D-GPR system, can explain our findings obtained in this research

    Mapping of agricultural subsurface drainage systems using a frequency-domain ground penetrating radar and evaluating its performance using a single-frequency multi-receiver electromagnetic induction instrument

    Get PDF
    Subsurface drainage systems are commonly used to remove surplus water from the soil profile of a poorly drained farmland. Traditional methods for drainage mapping involve the use of tile probes and trenching equipment that are time-consuming, labor-intensive, and invasive, thereby entailing an inherent risk of damaging the drainpipes. Effective and efficient methods are needed in order to map the buried drain lines: (1) to comprehend the processes of leaching and offsite release of nutrients and pesticides and (2) for the installation of a new set of drain lines between the old ones to enhance the soil water removal. Non-invasive geophysical soil sensors provide a potential alternative solution. Previous research has mainly showcased the use of time-domain ground penetrating radar, with variable success, depending on local soil and hydrological conditions and the central frequency of the specific equipment used. The objectives of this study were: (1) to test the use of a stepped-frequency continuous wave three-dimensional ground penetrating radar (3D-GPR) with a wide antenna array for subsurface drainage mapping and (2) to evaluate its performance with the use of a single-frequency multi-receiver electromagnetic induction (EMI) sensor in-combination. This sensor combination was evaluated on twelve different study sites with various soil types with textures ranging from sand to clay till. While the 3D-GPR showed a high success rate in finding the drainpipes at five sites (sandy, sandy loam, loamy sand, and organic topsoils), the results at the other seven sites were less successful due to the limited penetration depth of the 3D-GPR signal. The results suggest that the electrical conductivity estimates produced by the inversion of apparent electrical conductivity data measured by the EMI sensor could be a useful proxy for explaining the success achieved by the 3D-GPR in finding the drain lines

    Adhesion force imaging in air and liquid by adhesion mode atomic force microscopy

    Get PDF
    A new imaging mode for the atomic force microscope(AFM), yielding images mapping the adhesion force between tip and sample, is introduced. The adhesion mode AFM takes a force curve at each pixel by ramping a piezoactuator, moving the siliconā€nitride tip up and down towards the sample. During the retrace the tip leaves the sample with an adhesion dip showing up in the force curve. Adhesion force images mapping parameters describing this adhesion dip, such as peak value, width, and area, are acquired onā€line together with the sample topography. Imaging in air gives information on the differences in hydrophobicity of sample features. While imaging a mercaptopentadecaneā€gold layer on glass in demineralized water, the adhesion force could be modulated by adding phosphate buffered saline
    • ā€¦
    corecore