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Abstract
Soil water repellency (SWR) is a common phenomenon across agricultural soils

of South Greenland that can negatively affect soil functions. Existing methods

to measure SWR as a function of water content (w) are laborious. This study

was conducted to compare the potential of visible–near-infrared spectroscopy

(vis–NIRS) as an alternative method to pedotransfer functions (PTFs) for predicting

four SWR indices in 143 agricultural soils from South Greenland (clay, 0.016–0.172

kg kg–1; organic carbon (OC), 0.009–0.241 kg kg–1). Pedotransfer functions were

established by multiple linear regression based on OC, clay, and pH. Partial least

squares regression (PLS-R) and interval PLS-R were applied to build vis–NIRS

prediction models (vis–NIR range 400–2,500 nm). The area under the SWR–w
curve (SWRarea) and the critical soil water content (wnon) were accurately predicted

by PTFs (R2 = .90; R2
adj = .91) while the SWR after 60 ˚C pretreatment (SWR60),

and the integrative repellency dynamic index (IRDI) were predicted less accurately

(R2
adj = .36; R2

adj = .27). Vis-NIRS models with variable selection performed at

a better or close to the same level of accuracy as PTFs (SWRarea, R2 = .88; wnon,

R2 = .90; SWR60, R2 = .63; IRDI, R2 = .54). This study demonstrated vis–NIRS

as a valuable alternative to PTFs for rapid assessment of SWR and as a tool for

SWR mitigation for farmers in South Greenland. The results may well apply to other

regions with similar texture and OC ranges, but further testing is required.

Abbreviations: iPLS-R, interval partial least squares regression; IRDI, integrative repellency dynamic index; LOI550, loss of ignition at 550 °C; MED,
molarity of an ethanol droplet; MLR, multiple linear regression; OC, organic carbon; PLS-R, partial least squares regression; PTF, pedotransfer function;
R2

adj, R2 adjusted for number of independent variables; RMSECV, RMSE of the cross-validation; SRMSE, standardized root mean square error; SWR, soil
water repellency; SWR60, soil water repellency after 60 °C pretreatment; SWRarea, area under the SWR-w curve; vis–NIRS, visible–near-infrared
spectroscopy; w, water content; wnon, critical soil water content.
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1 INTRODUCTION

Agricultural soils in South Greenland exhibit a high preva-
lence in soil water repellency (SWR); 99 and 98% of the
investigated soils in the study by Weber et al. (2021) were
water repellent and extremely water repellent, respectively.
Comparably, other studies across different scales, as well
as climatic and geographic regions, found the prevalence of
SWR to exceed 90% (Davari et al., 2022; Deurer et al., 2011;
Hermansen et al., 2019b; Seaton et al., 2019).

Soil water repellency is a phenomenon that exists for some
soils within a soil-specific range in water content (w) (de
Jonge et al., 1999, 2007; Dekker & Ritsema, 1995; Dekker
et al., 2001). Above a certain threshold in w (wnon), the
soil remains hydrophilic regardless of further increases in
moisture content. Below wnon, the severity in SWR varies
nonlinearly with w, and the shape of the SWR vs. w (SWR–w)
curve can either be unimodal or bimodal (de Jonge et al.,
1999; Regalado et al., 2008). Soil water repellency affects
soil functional properties and has been associated with
increased overland flow, increased soil erosion, decreased
infiltration, decreased plant yield, finger flow or preferen-
tial flow, enhanced nutrient loss, and enhanced pesticide
leaching (Dekker & Ritsema, 1996a; b; Blackwell, 2000;
Leighton-Boyce et al., 2007; de Jonge et al., 2009; Müller
et al., 2018). As warmer temperatures are projected for South
Greenland (Hanna et al., 2021), a subsequent increase in
agricultural land use must be expected (Masson-Delmotte
et al., 2012). This will require a better understanding of the
physical parameters affecting the severe SWR in this region.
Knowledge of both wnon and the severity in SWR across
a gradient in soil water content (SWRarea) will be useful
for SWR remediation purposes. The soil property with the
greatest influence on SWRarea and wnon is the soil organic
carbon (OC) content. Several studies have reported a high
and often linear correlation between OC content and SWRarea
and wnon (Kawamoto et al., 2007; Regalado et al., 2008;
Hermansen et al., 2019b; Weber et al., 2021). Organic matter
acting as a hydrophobic coating on soil particles is generally
considered as the main cause of SWR in soils (Doerr et al.,
2000), and it can be formed either from waxes produced by
plants or by microbial activity (Giovannini et al., 1983).

There are several methods for assessing SWR. The most
widely used methods are the molarity of an ethanol droplet
(MED) test (Watson & Letey, 1970; King, 1981; Roy &
McGill, 2002), the water drop penetration time (Letey et al.,
2000), and the sessile drop method (Bachmann et al., 2000).
While the degree of SWR is measured with the MED test,
the persistence of SWR is measured with the water drop
penetration time method. Further, the sessile drop method
measures the contact angle between a water droplet and
the soil. It is extremely time consuming and laborious to
measure the full SWR–w curve because it requires SWR to

Core Ideas
∙ Soil water repellency (SWR) vs. w curves were

measured for 143 South Greenlandic soil samples.
∙ The area under the SWR–w curve and the critical

w were determined.
∙ PTFs based on basic soil properties predicted

SWRarea and wnon accurately.
∙ Rapid spectral measurements (vis–NIRS) pre-

dicted SWR indices with similar accuracy.
∙ Variable selection within the vis–NIR spectrum

(iPLS-R) improved vis–NIRS model performance.

F I G U R E 1 Map over the study area in South Greenland with the
four field locations marked: Igaliku (IG), Qassiarsuk (QA), Sondre
Igaliku (SI), and Upernaviarsuk (UP)

be measured across a range in w from completely dry to moist
conditions. As an example, it requires a minimum of one full
working day to measure a full SWR–w curve using the MED
test when accumulating the time required to perform all steps
involved. It would thus be highly beneficial with alternative
and less time-consuming methods to assess SWR.

Throughout the literature, pedotransfer functions (PTFs)
for SWR indices based on basic soil properties have been
developed. For example, Weber et al. (2021) used clay and
OC to predict wnon for Greenlandic soils, while Hermansen
et al. (2019b) estimated SWRarea using OC and pH as
predictors. Further, Karunarathna et al. (2010) developed a
two-region model that related the degree of SWR to matric
potential and, by using the van Genuchten soil water retention
model, to water content. However, this method does not
eliminate the time-consuming laboratory work required to
obtain soil water retention data. Another method that has
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proven successful for rapid (<2 min) estimation of a wide
range of soil properties is visible–near-infrared spectroscopy
(vis–NIRS) (Chang et al., 2001). Organic carbon, texture, and
a wide range of soil functional properties can be predicted
with this method (Ben-Dor & Banin, 1995; Stenberg et al.,
2010; Katuwal et al., 2018). One of the advantages of this
method is that several basic and functional soil properties can
be derived from the same spectrum. Its broad applicability
for soil property estimation can be attributed to overtone
and combination bands of fundamental vibrations in the
mid-infrared region originating from different molecular
bonds (i.e., O-H, metal-OH, C-H, C-O, and N-H) and elec-
tronic transitions of iron oxides (Hunt, 1977; Ben-Dor, 2002;
Stenberg et al., 2010). Some studies have already predicted
SWR using vis–NIRS. The degree of SWR after heat pre-
treatments of 60 and 105 °C was predicted well for soils from
a coarse-textured Danish agricultural field (OC, 0.014–0.025
kg kg−1) (Knadel et al., 2016). Another study predicted both
the degree and persistence of SWR after heat pretreatment at
65 °C on soils from the North Island of New Zealand (OC,
0.033–0.123 kg kg−1) (Kim et al., 2014). Further, a study
used partial least squares regression (PLS-R) with vis–NIRS
to predict the SWR index (measured with the relative sorp-
tivity method) and obtained acceptable results (R2

> .52 and
ratio of performance to interquartile distance > 2.27) for 100
soil samples from Iran (soil organic matter, 0.007–0.136 kg
kg−1) (Davari et al., 2022). Lastly, the SWR–w curve, as well
as SWRarea, were predicted using vis–NIRS by Hermansen
et al. (2019a) on soil samples from the South Island of New
Zealand (OC, 0.021–0.147 kg−1) using an approach where
fitting parameters (maximum SWR, soil water content at
maximum SWR and wnon) of a three-parameter moisture-
dependent SWR model were predicted. The ratio between
SWRarea and wnon, called integrative repellency dynamic
index (IRDI), is a measure of the average SWR proposed
by Regalado and Ritter (2005). The IRDI has not yet been
predicted using vis–NIRS in any published work known to
the authors. Thus, the limited literature on this topic indicates
that some SWR indices can be predicted using vis–NIRS
although the prediction accuracy varies. The arctic soils in
South Greenland differ significantly from the soils used in
previous datasets to develop vis–NIRS prediction models for
SWR indices throughout literature. Comparatively, the soils
in South Greenland are farmed across a range of altitudes, and
the environment is unique with steep mountain slopes, fjords,
and proximity (<60 km) to the inland ice sheet. These factors
can affect the microclimatic conditions directly or indirectly,
and further affect both the quantity and quality of organic
matter present in these soils. Given the high prevalence of
SWR in South Greenland, estimating key SWR indices using
rapid (<2 min) vis–NIRS analysis to replace time-consuming
laboratory work has the potential to ease the process of SWR
remediation. For example, for the purpose of using irrigation

as an SWR amelioration technique (Wallis & Horne, 1992),
knowledge of wnon is beneficial.

Thus, based on 143 soil samples, the objectives of
this study were to assess the potential of vis–NIRS as an
alternative method to PTFs for estimating SWR indices
in high-organic agricultural soils in South Greenland by
(a) developing PTFs for the four SWR indices: SWR60,
SWRarea, wnon, and IRDI based on basic soil properties (OC,
clay, and pH); (b) developing full-curve and interval PLS-R
vis–NIRS prediction models for the same four SWR indices
and; (c) comparing model performances of vis–NIRS to PTFs.
Further, the spectral intervals selected in the variable selection
will be analyzed to gain knowledge of the spectral intervals
and soil constituents involved in the prediction of SWR.

2 MATERIALS AND METHODS

2.1 Study area and soil sampling

A total of 143 samples were collected from four different
areas comprising 16 fields in South Greenland as part of
sampling campaigns during the summers of 2015, 2017, and
2018. Data from 127 samples originated from the paper by
Weber et al. (2021), while SWR data from the remaining 16
samples were new in this study. The four areas—Qassiarsuk
(61˚09′ N, 45˚30′ W), Igaliku (61˚00′ N, 45˚26′ W),
Søndre Igaliku (60˚53′ N, 45˚16′ W), and Upernaviarsuk
(60˚44′57.3′′ N, 45˚53′24.4′′ W) (Figure 1) are all part
of the main agricultural region in South Greenland where
sheep farming and pastures are most prevalent (Westergaard-
Nielsen et al., 2015). This region is permafrost-free and
stretches ∼60 km from the inland ice sheet to the open ocean
and is cut by several deep fjords. The climatic zone varies
from oceanic in the areas closest to open seas to subconti-
nental closer to the inland ice sheet (Jacobsen, 1987). Mean
annual temperatures ranged between −3 and 4.8 °C close
to the ice sheet (Narsarsuaq) and between −2.9 and 4.0 °C

close to the open ocean (Qarqortoq) in the period from 1961
to 1990, while mean annual precipitation in the same period
ranged between 615.1 and 857.6 mm for the two measurement
stations, respectively (Hanna & Cappelen, 2002).

The soils were sampled at ∼15 cm depth in fields pre-
dominantly grown with perennial grass mixtures. A detailed
description of soil sample collection and field conditions can
be found in Weber et al. (2021).

2.2 Soil water repellency

The MED test (King, 1981; de Jonge et al., 1999; Hermansen
et al., 2019b) was used in this study to assess the degree
of SWR, and the protocol described in Hermansen et al.
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F I G U R E 2 (a) Soil water repellency (SWR) as a function of soil water content for three samples representing the minimum, intermediate, and
maximum trapezoidal integrated area underneath the SWR vs. soil water content curve (SWRarea). The maximum SWRarea is highlighted, as are the
indices: SWR determined after heat pretreatment at 60 ˚C (SWR60) and critical soil water content (wnon). Note the y axis is inverted. (b) Visible
near-infrared spectra of the samples representing the minimum, intermediate, and maximum SWRarea and the corresponding spectrally active
components

(2019b) was carefully followed. In short, droplets (60 μl)
of varying ethanol solution concentrations (0–50 m3 m−3,
0.01 m3 m−3 steps) were pipetted onto a smoothened soil sur-
face. The highest ethanol solution concentration that stayed
on the surface >5 s corresponded to the degree of SWR.

Soil water repellency was measured across a gradient in
soil water contents—from completely dry conditions until
wnon, where water repellency ceased. Water contents of 0 kg
kg−1 were obtained by oven drying the soils at 105 ˚C for 24 h.
After oven drying at 105 ˚C, the soils were kept in a desiccator
until room temperature was reached. Water contents between
0 kg kg−1 and air-dry conditions were obtained by first
oven-drying the soils at 60 ˚C, after which the soils were equi-
librated for 48 h at climate-controlled laboratory conditions
(20 ˚C). To obtain water contents above air-dry conditions,
increasing amounts of water were pipetted onto the soils, after
which the samples were thoroughly mixed and refrigerated in
zip-lock bags for at least 2 wk to ensure even distribution of
water before SWR measurement. The soil water content was
then measured on a subsample of the moist sample by oven
drying at 105 ˚C, while MED measurement was performed on
a second subsample. Using the equation provided by Roy and
McGill (2002), ethanol solution concentration was converted
to the unit of surface tension (mN m−1). The four indices
used throughout this paper all characterize the SWR–w curve
(Figure 2a): SWR60, SWRarea, wnon, and IRDI. The y axis in
the SWR–w plot (Figure 2a) is inverted and crosses the x axis
at 71.27 mN m−1, which is the surface tension of water and
the point at which the soil will become hydrophilic.

2.3 Development of pedotransfer functions

Forward multiple linear regression was performed to establish
PTFs describing the SWR indices (SWR60, SWRarea, wnon,,
and IRDI) using the soil OC, clay content, and pH. All soil
variables that contributed significantly (p < .05) were used in
the expressions. The prediction accuracy was evaluated using
the coefficient of determination adjusted for the number of
independent variables used in the expression (R2

adj), the root
mean square error (RMSE), and the standardized RMSE
(SRMSE) calculated as the RMSE divided by the range in the
response variable [SRMSE = RMSE/(max − min)] (Arthur,
2017). The SRMSE enables model comparison across indices,
and a relatively high error is reflected in a high SRMSE. In
this paper, the PTFs for SWRarea and wnon with OC as predic-
tor variable were comparable to PTFs originally presented in
the study by Weber et al. (2021). However, these PTFs were
updated to represent the specific dataset of this study, such that
model performances of PTFs and vis–NIRS models could be
directly compared. The remaining PTFs presented throughout
this paper were specifically developed for this study.

2.4 Visible near-infrared spectroscopy
measurements

A benchtop DS2500 vis–NIR spectrometer (FOSS) was
used to measure diffuse reflectance (R) within the visible
(400–780 nm) and near-infrared (780–2,500 nm) regions
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with a sampling interval of 0.5 nm. The protocol described
in Hermansen et al. (2016) was closely followed. During
vis–NIRS measurements, the laboratory temperature ranged
from 23 to 24 ˚C and the relative humidity of the room ranged
from 46 to 53%. Prior to measuring, the instrument was
tested for stability with a white reference. A representative
part (∼50 g) of each sample (air dried and 2 mm sieved)
was placed in a measuring cup fitted with a quartz window.
The cup rotated while the instrument took measurements at
seven different points of the sample surface facing the quartz
window. The measurements were then averaged into one
representative diffuse reflectance spectra and converted to
absorbance (A) using the relation A = log(1/R).

2.5 Multivariate data analysis

Multivariate data analysis was performed using the PLS
Toolbox (Eigenvector Research Inc.) software. Calibration
models were established by correlating the predictor vari-
ables (spectral data) with reference data for each response
variable (OC, clay, SWRarea, wnon, SWR60, and IRDI). Two
approaches were used in this process: partial least squares
regression (PLS-R) and interval PLS-R (iPLS-R), both using
the SIMPLS algorithm (de Jong, 1993).

Partial least squares regression is a widely used method
within chemometrics that relates two sets of data—predictor
variables and response variables—by regression. The result-
ing calibration model can then be used to predict values of the
response variables for new samples (Esbensen, 1994; Wold
et al., 2001). It is a data compression technique where the
spectral data gets reduced to a number of factors explaining
the maximum covariance between the predictor and the
response variable. Using too many factors will result in a
very complex calibration model also explaining the variation
caused by noise. The optimal number of factors was deter-
mined by inspecting the plot of the RMSE vs. the number of
factors and selecting the number of factors where the lowest
RMSE could be achieved without the distance between the
RMSE of calibration and cross-validation increased.

Visible–near-infrared spectroscopy models for SWR
indices, OC, and clay were established on the full vis–NIR
range, hereafter referred to as ‘full-curve’, as well as index-
specific spectral regions. An automated function in PLS
Toolbox designed to perform forward iPLS-R was used for
variable selection to identify important spectral regions and
decrease the complexity of the models (Zou et al., 2010). The
processes involved in this tool can be divided into several
steps. In the first step, the spectra are divided into equally
sized intervals, and a calibration model is developed based
on each interval. Next, the interval with the lowest RMSE
is selected, and the algorithm run again while only adding
intervals that decrease the total RMSE value. Finally, the

output is a selection of intervals on which a calibration model
is developed to predict new values of the variable in question.
A separate iPLS-R variable selection was performed for
each of the soil indices (OC, clay, SWR60, SWRarea, wnon,
and IRDI). The variable selection was tested with different
interval sizes: 60, 80, 100, and 120, which corresponded to
widths of 30, 40, 50, and 60 nm because the measurements
were recorded every 0.5 nm.

Smoothing and derivatives of spectral data can be applied
to remove additive and multiplicative effects and correct
for baseline effects caused by nonchemical effects (Rinnan
et al., 2009). Thus, multiple different pretreatment techniques
were systematically tested on the full-curve spectral data for
each calibration model. The tested pretreatments included
the following: Savitzky–Golay smoothing, first and second
derivatives (Savitzky & Golay, 1964), and Gap Segment
smoothing, first and second derivatives (Norris, 2001). Based
on this, the two best-performing pretreatments were used for
iPLS-R, and the pretreatment that collectively performed best
for both PLS-R and iPLS-R was chosen. Additionally, the
predictor variables and the response variables were all mean
centered, and both approaches were tested with mean cen-
tering only. The RMSE of the cross-validation (RMSECV),
coefficient of determination (R2), and SRMSE were used to
assess the performance of each model. Generally, the best
performing model in terms of RMSE and R2 with the lowest
number of factors was chosen.

Full cross-validation (leave-one-out) was carried out for
models based on full-curve and specific spectral intervals
as well. The full cross-validation served several functions,
specifically, to assess the optimal complexity of the model
(number of factors) and to attain better comparability in the
results with multiple linear regression (MLR) PTFs.

3 RESULTS AND DISCUSSION

3.1 Basic soil properties

The 143 soil samples ranged from 0.016 to 0.172 kg kg−1 in
clay content with a mean of 0.053 kg kg−1 and the OC content
spanned widely from 0.009 to 0.241 kg kg−1 (Table 1). The
soil samples covered four USDA soil textural classes (sand,
loamy sand, sandy loam, and loam) as described in the Weber
et al. (2021) study that reported on 127 of the samples also
included in this study.

The relationship between clay content and OC content is
plotted in Figure 3a. The distribution of the samples relative
to the Dexter n (clay/OC = 10) line showed an overweight
of OC to clay content. A clay/OC ratio of 10 has been sug-
gested as the upper limit for clay complexation with OC (Dex-
ter et al., 2008), indicating that the OC in the Greenland soils
was present in both complexed and noncomplexed form.
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T A B L E 1 Descriptive statistics (n = 143) for soil texture, organic carbon (OC), loss-on-ignition at 550 ˚C (LOI550), pH, and soil water
repellency (SWR) indices

Property Min Max Mean Median Q1 Q3

Clay, kg kg−1 0.016 0.172 0.053 0.047 0.038 0.063

Silt, kg kg−1 0.068 0.435 0.278 0.297 0.223 0.323

Sand, kg kg−1 0.237 0.876 0.543 0.527 0.486 0.606

OC, kg kg−1 0.009 0.241 0.063 0.059 0.039 0.075

LOI550, kg kg−1 0.023 0.649 0.121 0.109 0.082 0.132

pH 4.5 7.5 5.2 5.1 4.9 5.5

SWR60, mN m−1 35.54 71.27 56.59 54.80 49.34 63.58

SWRarea, mN m−1 kg kg−1 0.54 25.89 6.17 5.04 3.82 7.23

wnon, kg kg−1 0.052 0.921 0.227 0.197 0.159 0.254

IRDI 4.52 36.25 26.17 26.65 23.66 29.18

Note. Min, minimum; Max, maximum; Q1, first quartile of data set; Q3, third quartile of data set; SWR60, SWR after 60 ˚C pretreatment; SWRarea, the area under SWR–w
curve; wnon, critical soil water content; IRDI, the ratio between SWRarea and wnon.

F I G U R E 3 (a) The clay content (CL) with Dexter n (n = CL/OC = 10) and (b) loss-on-ignition at 550 ˚C (LOI550) as a function of the organic
carbon content (OC)

The ratio between loss of ignition at 550 °C (LOI550) and
OC was 2.09 for the sampled soils (Figure 3b). This aligns
well with Pribyl (2010) who argued that using a conversion
factor between OC/SOM = 2, corresponding to a 50% OC
content in SOM, is accurate in most cases.

3.2 Soil water repellency curves

All 143 samples used in this study exhibited water repellency
(Figure 2a). The majority of the measured SWR–w curves
were illustrated by Weber et al. (2021).

The SWR–w curves of the soils with the minimum,
intermediate, and maximum SWRarea are plotted in Figure 2a
to show the range in different curve shapes and sizes. The
index SWRarea spanned widely from 0.54 to 25.89 mN m−1

kg kg−1 (Table 1). The curve exhibiting the lowest SWRarea
was characterized by a unimodal curve shape, whereas the
curves exhibiting the intermediate and highest SWRarea were
characterized by a bimodal curve shape (de Jonge et al., 1999;
Regalado et al., 2008). A high SWRarea can be attributed to
a high OC content (de Jonge et al., 1999; Regalado et al.,
2008; Hermansen et al., 2019b; Weber et al., 2021). This was
also the case for the sample with the maximum SWRarea,
which had the highest OC content, while the opposite was
true for the sample with the minimum SWRarea. Clay content
was highest in the sample with the maximum SWRarea,
however, the sample with the lowest clay content did not
exhibit the minimum SWRarea, demonstrating the lack of a
clear influence of clay on soil water repellency.

The critical water content also varied considerably ranging
from 0.052 to 0.921 kg kg−1 (Table 1). For 71 New Zealand
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T A B L E 2 Pedotransfer functions using linear regression (LR) and multiple linear regression (MLR) for soil water repellency (SWR)
indices—SWR after 60 ˚C pretreatment (SWR60), the area under SWR–w curve (SWRarea), critical soil water content (wnon) and the ratio between
SWRarea and wnon (IRDI)—based on organic carbon (OC) in combination with clay content (CL) and pH for 143 samples

Property Regression Equation r R2 R2
adj RMSE SRMSE

SWR60 LR −106.82 OC + 63.29 0.47 .22 .21 7.82 0.22

MLR −128.59 OC + 87.46 CL + 5.39 pH +
31.72

0.61 .38 .36 6.98 0.20

SWRarea LR 106.14 OC − 0.49a 0.95 .90 .90 1.36 0.05

wnon LR 3.30 OC + 0.02a 0.94 .88 .88 0.05 0.06

MLR 3.10 OC + 0.82 CL + 0.025 pH − 0.14 0.96 .92 .91 0.04 0.05

IRDI LR 51.88 OC + 22.92 0.44 .19 .18 4.17 0.13

MLR 66.30 OC − 58.05 CL + 25.11 0.53 .28 .27 3.93 0.12

Note. r, coefficient of determination; R2
adj, coefficient of determination adjusted for number of variables; SRMSE, standardized RMSE.

aModified from Weber et al. (2021).

soil samples, wnon was found to range between 0.050 and
0.438 kg kg−1 and SWRarea to range between 0.12 and
11.57 mN m−1 kg kg−1 (Hermansen et al., 2019a). Sim-
ilarly, de Jonge et al. (2007) found values of wnon from
0.03 to 0.095 kg kg−1 but much lower values of SWRarea
(0–2.9 mN m−1 kg kg−1) on Danish soils with different crop
types. Thus comparatively, the subarctic soils in this study
had a relatively high severity in SWRarea and wnon compared
with the New Zealand soils, while the severity was much
more evident when comparing SWRarea with Danish soils.
The critical water content found in this study, however, was
quite similar to the Danish soils.

3.3 Performance of pedotransfer functions

The OC content contributed significantly to explaining the
variance in all four SWR indices (SWR60, SWRarea, wnon,
and IRDI; p < .001). However, an improvement in prediction
accuracy was achieved when OC was used in combination
with clay for IRDI and clay and pH for SWR60 and wnon,
thereby establishing PTFs using multiple linear regression
(Table 2). The SWRarea was best described using the linear
regression model based on OC alone with an R2 = .90 and
RMSE = 1.36 mN m−1 kg kg−1, because neither clay nor pH
were significant (p > .05).

Figure 4a–d shows the best-performing PTFs established
for the four SWR indices. A strong positive correlation was
demonstrated between SWRarea and OC (R2

adj = .90) and wnon
and OC (R2

adj = .91) as was also found by Weber et al. (2021)
using parts of the same data set. This is consistent with pre-
vious studies (de Jonge et al., 1999; Regalado & Ritter, 2005;
Wijewardana et al., 2016; Hermansen et al., 2019b). The aver-
age SWR (IRDI) exhibited a weak correlation with OC (R2

adj
= .27), as did the SWR60 (R2

adj = .36). The weak correla-
tion between OC and SWR60 might indicate that SWR60 was
more dependent on the type of OC and degree of decomposi-

tion than the amount as opposed to SWRarea (de Jonge et al.,
1999; Hermansen et al., 2019b). The PTFs for estimating wnon
and IRDI did not resolve the variation for the Sondre Iga-
liku samples well. Most likely, this was due to the low vari-
ation and range in OC and clay content relative to the other
regions included in the PTFs (Figure 3a). This emphasizes the
importance of including a diverse range of locations, as it will
improve the versatility of the resulting PTFs.

3.4 Visible near-infrared spectra

Figure 2b shows the unprocessed vis–NIR absorbance
spectra of the samples with the maximum, intermediate, and
minimum SWRarea. The sample with the maximum SWRarea
and highest OC content had the highest absorbance in the
visible range (400–700 nm). However, the sample with the
intermediate SWRarea had a lower absorbance than the sam-
ple with the minimum SWRarea in this region. Absorption in
the visible range is mainly caused by overlapping responses
from iron oxides and OC (Hunt, 1977; Scheinost et al., 1998).
Thus, the high absorbance in the visible range may be due
to the presence of a high OC content for the sample with the
maximum SWRarea, while the medium-high absorbance in
the sample with the minimum SWRarea may be due to the
presence of iron oxides because it had the lowest OC content.
The shoulder around 800–900 nm present only in this sample
was interpreted as a possible response from hematite or other
iron oxides (Scheinost et al., 1998). A pronounced absorbance
feature around 1,930 nm, which was present for all three
samples, was associated with O-H groups adsorbed onto
the particle surfaces in the mineral lattice (Ben-Dor, 2002;
Stenberg et al., 2010). A lesser prominent feature around
1,420 nm, also present for all three samples, was attributed
to the presence of O-H functional groups. Features around
1,730 nm and 2,310–2,350 nm may be attributed to vibrations
of C-H stretches associated with possible OC components
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F I G U R E 4 (a, b, d) Pedotransfer functions using multiple variables for soil water repellency (SWR) indices; SWR after 60 ˚C pretreatment
(SWR60), critical soil water content (wnon) and the ratio between the area under SWR–w curve (SWRarea) and wnon (IRDI) based on organic carbon
content (OC), clay content (CL), and pH. (c) SWRarea is described with a single variable pedotransfer function based on OC alone because neither
clay content nor pH was significant. *Function is modified from Weber et al. (2021) to include all 143 samples. Locations: IG, Igaliku; QA,
Qassiarsuk; SI, Sondre Igaliku; UP, Upernaviarsuk

such as humic acids, waxes, starches, or cellulose (Ben-Dor
et al., 1997).

3.5 Vis–NIRS prediction of soil water
repellency

Partial least squares regression models were established to
predict OC, clay content, and the four SWR indices (SWR60,
SWRarea, wnon, and IRDI) using full-curve (400–2,500
nm) vis–NIR spectral measurements. The vis–NIR spectra
were pretreated using the first derivative gap-segment
(gap, 9; segment, 9) for OC, SWRarea, and wnon and the
second derivative gap-segment (gap, 19; segment, 25) for
SWR60. A first derivative Savitzky–Golay (filter width,
25) pretreatment was used for IRDI, and finally, second
derivative Savitzky–Golay (filter width, 39) was used for clay
content.

Table 3 shows the PLS-R vis–NIRS calibration and
cross-validation results using R2, RMSE and SRMSE to
assess model accuracy. The OC content was estimated well
yielding an R2 = .86 and an RMSECV = 0.015 kg kg−1 using
nine factors. Clay was estimated with a low accuracy (R2

= .53 and an RMSECV = 0.018 kg kg−1) using four factors
with particularly one location (Qassiarsuk) displaying a large
scatter around the 1:1 line (Figure 5d). The estimations of
SWR60 and IRDI were both quite poor with performance
results of R2 = .44 and an RMSECV = 6.69 mN m−1 and R2

= .41 and an RMSECV = 3.62, respectively. The SWRarea
and wnon however, were both well estimated (R2 = .79 and
RMSECV = 1.99 mN m−1 kg kg−1 and R2 = .84 and RMSECV
= 0.054 kg kg−1, accordingly) both using nine factors. The
model accuracy of SWR60 and IRDI was improved while it
decreased slightly for SWRarea and wnon in comparison with
results from MLR PTFs.
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F I G U R E 5 Reference and vis–NIRS-predicted (cross-validation) values for (a) organic carbon content (OC), (b) soil water repellency (SWR)
after 60 ˚C heat pretreatment (SWR60), (c) critical soil water content (wnon), (d) clay content (CL), (e) the area under SWR–w curve (SWRarea), and
(f) the ratio between SWRarea and wnon (IRDI) using full-curve partial least squares regression (PLS-R), and (g–l) equivalent values using interval
PLS-R (iPLS-R)
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T A B L E 3 Full-curve partial least squares regression (PLS-R) and interval PLS-R (iPLS-R) calibration and cross-validation results for organic
carbon content (OC), clay content, and four soil water repellency (SWR) indices—SWR after 60 ˚C pretreatment (SWR60), the area under SWR–w
curve (SWRarea), critical soil water content (wnon), and the ratio between SWRarea and wnon (IRDI)—for 143 samples using visible–near-infrared
spectral measurements

Property Mean NF

R2 RMSE

SRMSECalibration Cross-validation Calibration Cross-validation
Full-curve PLS-R
OC, kg kg−1 0.06 9 .91 .86 0.011 0.015 0.06

Clay, kg kg−1 0.05 4 .67 .53 0.015 0.018 0.12

SWR60, mN m−1 56.59 7 .57 .44 5.79 6.69 0.19

SWRarea, mN m−1 kg kg−1 6.17 9 .89 .79 1.42 1.99 0.08

wnon, kg kg−1 0.23 9 .91 .84 0.041 0.054 0.06

IRDI 26.17 9 .59 .41 2.96 3.62 0.11

iPLS-R
OC, kg kg−1 0.06 11 .93 .90 0.010 0.012 0.05

Clay, kg kg−1 0.05 5 .76 .71 0.013 0.014 0.09

SWR60, mN m−1 56.59 10 .69 .63 4.96 5.44 0.15

SWRarea, mN m−1 kg kg−1 6.17 12 .93 .88 1.15 1.48 0.06

wnon, kg kg−1 0.23 9 .92 .90 0.037 0.044 0.05

IRDI 26.17 9 .62 .54 2.84 3.16 0.10

Note. NF, number of factors; R2, coefficient of determination of calibration and cross-validation; SRMSE, standardized RMSE.

T A B L E 4 Wavelength intervals for prediction of organic carbon content (OC), clay content and four soil water repellency (SWR)
indices—SWR after 60 ˚C pretreatment (SWR60), the area under SWR–w curve (SWRarea), critical soil water content (wnon), and the ratio between
SWRarea and wnon (IRDI)—selected using interval partial least squares regression (iPLS-R)

Property Wavelength intervals
nm

OC 1,120–1,159.5, 1,520–1,559.5, 1,640–1,679.5, 1,720–1,759.5, 2,000–2,039.5, 2,160–2,199.5

Clay 720–759.5, 1,160–1,199.5, 1,520–1,559.5, 1,640–1,649.5, 2,080–2,119.5, 2,160–2,199.5

SWR60 610–639.5, 1,090–1,149.5, 1,210–1,239.5, 1,450–1,479.5, 1,660–1,689.5, 2,050–2,139.5, 2,320–2,349.5, 2,410–2,439.5,
2,470–2,499.5

SWRarea 1,560–1,599.5, 1,720–1,799.5, 1,840–1,879.5, 2,040–2,199.5

wnon 1,450–1,549.5, 1,700–1,749.5, 2,050–2,099.5, 2,150–2,199.5

IRDI 700-759.5, 1,840–1,899.5, 2,380–2,439.5

Besides using full-curve vis–NIR spectra (400–2,500 nm)
for modeling, variable selection by iPLS-R was additionally
used to establish models based on specific spectral intervals.
The performance of the iPLS-R models can also be found in
Table 3. When using the selected intervals (Table 4), the esti-
mation of OC improved slightly (R2 = .90 and RMSECV =
0.012 kg kg−1), while the estimation of clay improved signif-
icantly (R2 = .71 and RMSECV = 0.014 kg kg−1). The esti-
mation of SWR60 now showed acceptable results (R2 = .63
and RMSECV = 5.44 mN m−1), and IRDI was estimated bet-
ter than when using the entire spectral range, although still
with a low model accuracy (R2 = .54 and RMSECV = 3.16).
The SWRarea and wnon were both still well estimated with
slightly better results than when using the entire spectral range

(R2 = .88 and RMSECV = 1.48 mN m−1 kg kg−1 and R2 = .90
and RMSECV = 0.044 kg kg−1).

There was a decrease in SRMSE for all response variables
when iPLS-R was used instead of full-curve PLS-R (Table 3).
The models that showed the lowest SRMSE was for OC
content (SRMSE = 0.06 and SRMSE = 0.05) and for wnon
(SRMSE = 0.06 and SRMSE = 0.05) using full-curve and
iPLS-R, respectively. The SWRarea was estimated with
a similar low error using iPLS-R (SRMSE = 0.06). The
model for IRDI had a relatively high error using full-curve
PLS-R and iPLS-R, respectively (SRMSE = 0.11 and 0.10).
The models for both clay content and SWR60 showed the
greatest improvement in SRMSE from full-curve PLS-R to
iPLS-R. However, the model for SWR60 still showed the
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highest SRMSE for both approaches (SRMSE = 0.19 and
0.15). Clay, SWR60, and IRDI all showed a high density of
data around the mean with a relatively low range between
maximum and minimum points (Figure 5b,d,f), which could
cause the low model accuracy for these three indices.

This study showed that full-curve PLS-R and iPLS-R are
reliable methods to predict OC content with high accuracy.
This agrees with results on OC vis–NIRS predictions from
Ogrič et al. (2019), who obtained high accuracy predictions
for area-specific PLS-R models in South Greenland, and
Hermansen et al. (2016), who included both Danish and
Greenlandic fields. The good performance of the OC models
in this study might be ascribed to the large range in OC
content (mean, 6.3%; first quartile, 3.9%; third quartile, 7.5%)
(Table 1) found in the sampled fields. This study also found
a quite pronounced division between the predictive abilities
of the highly OC-related SWR indices SWRarea and wnon
with high-performance results and the two remaining SWR
indices SWR60 and IRDI with poor performance. Knadel
et al. (2016) found a high prediction ability of SWR60 (R2 =
.85 and RMSECV = 2.52 mN m−1) and soil water repellency
after 105 °C heat pretreatment (R2 = .85 and RMSECV = 1.93
mN m−1). However, as opposed to our study, they did not find
a good predictive ability of OC because of low variability
(OC, 0.014–0.025 kg kg−1) and could therefore not ascribe
the good performance of the SWR models to a good predic-
tion of OC. Despite this, the good predictions of SWRarea and
wnon show that using vis–NIRS to predict some SWR indices
can be highly successful, and the accomplishment can proba-
bly be attributed to the strong correlation between these, OC,
and the spectrally active components of soil organic matter.

3.6 Spectral signatures

Regression coefficients indicate which wavelengths carry the
most information for describing variation in the vis–NIR-
predicted variables and can thus be used to analyze which
spectrally active constituents may be important for the pre-
diction of OC, clay, and SWR indices (Figure 6a–f). Based on
Figure 6a, the most essential spectral regions for predicting
OC were 400–700, 1,400–1,500, 1,700, and 2,200–2,400 nm.
Other studies have found important absorption bands for OC
around wavelengths of 480, 600–650, 1,724, and 2,300–2,350
nm (Hermansen et al., 2016); 2,275, 2,307–2,496, 2,137, and
2,381 nm (Viscarra Rossel & Behrens, 2010); and 1,700 and
2,000 nm (Stenberg, 2010). The region above 1,900 nm was
specifically emphasized for predicting OC by Vohland and
Emmerling (2011). The two well-predicted SWR indices—
SWRarea and wnon—both showed almost identical regression
coefficients compared with the regression coefficient of
OC (Figure 6a–c), indicating that the same wavelengths
were important in describing their variation. This could be
a derived effect of the strong correlation found between OC

and SWRarea and OC and wnon in this study, and the role of
OC in determining the severity of soil water repellency (de
Jonge et al., 2009; Hermansen et al., 2019b).

The spectral intervals selected in the iPLS-R models are
indicated with grey–blue areas in Figure 6a–f and listed in
Table 4. From the iPLS-R intervals, we could conclude that
including intervals in the visible region did not increase the
prediction accuracy for either OC, SWRarea, or wnon. The OC
fraction is spectrally active throughout the entire near-infrared
range, where overtones and combination bands of OC com-
pounds can be found (Ben-Dor & Banin, 1995; Kim et al.,
2014). Six intervals between 1,120–2,200 nm were included
in the best performing iPLS-R prediction of OC. Organic car-
bon, SWRarea, and wnon showed overlapping iPLS-R intervals
around 1,550, 1,720–1,750, 2,040, and 2,160–2,200 nm. An
interval around 1550 nm was selected for all three indices
despite none of them showing pronounced peaks in the regres-
sion coefficient. Hermansen et al. (2019b) found intervals
that increased predictive abilities using iPLS for SWRarea
at 1,440–1,505 and 1,765–1,830 nm and for wnon at 1,445–
1,500, 1,885–1,995, and 2,050–2,105 nm. The important
spectral regions thus only overlap with those found in liter-
ature around 1,750 and 2,100–2,200 nm, suggesting a unique
relation between relevant spectral intervals and SWR indices
for the soils from South Greenland. Other studies have found
important spectral regions for predicting SWR around 517–
620, 750–880, 1,060–1,490, 1,765, 1,920, and 2,050–2,320
nm (Kim et al., 2014; Knadel et al., 2016; Davari et al., 2022).
Absorption bands around 1,524 and 1,582 nm have been asso-
ciated with amides (C=O) and O-H in water (Ben-Dor et al.,
1997), respectively. A significant positive and negative peak
in the regression coefficient coincides with the 1,720–1,750
nm interval selected for all three indices. Features around
1730 nm may be ascribed to vibrations of C-H stretches (Ben-
Dor et al., 1997). These origin from aliphatic hydrocarbon (C-
H) chains and hydrocarbons bonded with functional groups,
which are thought to cause SWR as they act as a hydropho-
bic coating on particles (Doerr et al., 2000; McKissock et al.,
2002; Knadel et al., 2016). Finally, the overlapping inter-
vals between 2,040 and 2,200 nm showed some response in
terms of regression coefficients that may be related to differ-
ent organic compounds (Ben-Dor et al., 1997) as well as com-
binations of Al-OH bends with O-H stretches associated with
clay minerals (Hunt, 1977).

The important spectral regions found in the regression
coefficients for clay, SWR60, and IRDI (Figure 6b,c,f) were
spread out through the entire spectral range and did not appear
to be intercorrelated in the same manner. This suggests that
a more extensive use of the spectral data was necessary for
prediction of these variables. While pronounced peaks can be
found in the regression coefficients for clay at 1,400, 1,900,
and 2,200 nm, similar to the findings of Hermansen et al.
(2016) for Danish and Greenland soils, neither of the peaks
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F I G U R E 6 Regression coefficients for the full-curve partial least squares regression (PLS-R) models with wavelength intervals used in the
prediction of each variable selected using interval PLS-R (iPLS-R) marked with grey and blue. From top left: (a) organic carbon (OC), (b) the area
under SWR–w curve (SWRarea), (c) critical soil water content (wnon), (d) clay content (CL), (e) soil water repellency after 60 ˚C heat pretreatment
(SWR60), and (f) the ratio between SWRarea and wnon (IRDI)

were included in the six intervals selected for predicting clay
(Table 4). These absorption bands are normally associated
with structural water (1,400 and 1,900 nm) and aluminum
content in clay minerals (2,200 nm) (Hunt, 1977) and usually
comprise the main spectrally active regions found in clay.
Nine intervals were shown to improve the predictive accuracy
of SWR60 spanning almost the entire vis–NIR spectral range
(610–2,500 nm). Note that one interval covers the detector
shift at 1,100 nm. The IRDI required the least number of
intervals.

The presented models performed well across the four
included fields located in the main agricultural region of
South Greenland. Several studies across different climates
and soil types have observed a correlation between SWRarea
and OC, suggesting a universal relation (de Jonge et al.,
1999; Regalado & Ritter, 2005; Kawamoto et al., 2007; Wije-
wardana et al., 2016). Further, Weber et al. (2021) showed
that samples from New Zealand and South Greenland fol-
lowed the same linear trend in a SWRarea vs. OC plot, thus
demonstrating that the effect of OC on SWR occurrence is
comparable across climatically diverse locations. Analysis of
the regression coefficients in this study showed that vis–NIRS
predictions of SWR indices mainly relied on the information

from organic constituents. Because OC is a soil component,
from which we see direct spectral responses throughout the
vis–NIR spectral range, it is probably the main driver of the
ability of vis–NIRS to predict SWR in this study. Given the
suggested universal effect of OC on SWRarea, the presented
vis–NIRS models in this study might be applicable for SWR
prediction outside the study area. However, a prerequisite
would be that OC can be vis–NIRS-predicted and further
that OC and SWRarea correlate well. When a larger data set is
available, an independent validation should be conducted to
cover the full influence of a larger range in physical properties.

4 CONCLUSIONS

This study showed that applying iPLS-R on vis–NIR spectra
was found to perform either better or close to the same
level as PTFs and better than full-curve PLS-R at obtaining
prediction models for SWR indices—SWR60, SWRarea,
wnon, and IRDI—across 143 soil samples from the main
agricultural region in South Greenland. This method could
also provide accurate models for basic soil properties (OC
and clay content).
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The best results for estimating SWRarea was achieved when
using an OC-based linear regression PTF, while wnon was best
estimated using OC, clay, and pH in a MLR PTF. The high
performance is partly credited to the strong correlation with
OC. The non-OC related indices, SWR60 and IRDI, yielded
poor PTF estimates. Although, with slightly lower accuracy
than the PTFs, the full curve PLS-R vis–NIRS models gen-
erated estimates of SWRarea and wnon with a high precision,
which was improved further when applying iPLS-R. Both
SWR60 and IRDI were poorly estimated using full-curve PLS-
R but were estimated with acceptable accuracy using iPLS-R.
Consequently, vis–NIRS prediction models could estimate
SWR indices with sufficient accuracy for the method to be a
valuable addition to SWR mitigation for farmers in the region.

The spectral intervals containing most information of the
SWRarea and wnon indices overlapped with iPLS-R intervals
for OC prediction. Few specific spectral regions were found
to carry important information for accurately estimating
SWRarea and wnon while a more extensive use of the spectral
range was needed for the estimation of SWR60 and IRDI.

In perspective, the suggested methodology for predicting
SWR should be validated and further tested for soils repre-
senting an even broader range of soil textures and organic mat-
ter types and contents representing different climate zones.
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