8,887 research outputs found

    Electron Self Energy for Higher Excited S Levels

    Get PDF
    A nonperturbative numerical evaluation of the one-photon electron self energy for the 3S and 4S states with charge numbers Z=1 to 5 is described. The numerical results are in agreement with known terms in the expansion of the self energy in powers of Zalpha.Comment: 3 pages, RevTeX, to appear in Phys. Rev.

    Finite-rate water condensation in combustion-heated wind tunnels

    Get PDF
    A quasi-one-dimensional method for computing finite rate nucleation and droplet growth of water in a supersonic expansion of combustion products is presented. Sample computations are included for the Langley 8 foot High Temperature Tunnel, but the method can also be applied to other combustion heated wind tunnels. The sample results indicate that the free stream static pressure can be in the range of 25 to 60 percent greater than that computed for isentropic nozzle flow without water condensation. The method provides a tool for examining the effects of water condensation on static state properties and velocity of the supersonic stream in combustion heated wind tunnels

    Optical modeling of agricultural fields and rough-textured rock and mineral surfaces

    Get PDF
    Review was made of past models for describing the reflectance and/or emittance properties of agricultural/forestry and geological targets in an effort to select the best theoretical models. An extension of the six parameter Allen-Gayle-Richardson model was chosen as the agricultural plant canopy model. The model is used to predict the bidirectional reflectance of a field crop from known laboratory spectra of crop components and approximate plant geometry. The selected geological model is based on Mie theory and radiative transfer equations, and will assess the effect of textural variations of the spectral emittance of natural rock surfaces

    Considerations for a design and operations knowledge support system for Space Station Freedom

    Get PDF
    Engineering and operations of modern engineered systems depend critically upon detailed design and operations knowledge that is accurate and authoritative. A design and operations knowledge support system (DOKSS) is a modern computer-based information system providing knowledge about the creation, evolution, and growth of an engineered system. The purpose of a DOKSS is to provide convenient and effective access to this multifaceted information. The complexity of Space Station Freedom's (SSF's) systems, elements, interfaces, and organizations makes convenient access to design knowledge especially important, when compared to simpler systems. The life cycle length, being 30 or more years, adds a new dimension to space operations, maintenance, and evolution. Provided here is a review and discussion of design knowledge support systems to be delivered and operated as a critical part of the engineered system. A concept of a DOKSS for Space Station Freedom (SSF) is presented. This is followed by a detailed discussion of a DOKSS for the Lyndon B. Johnson Space Center and Work Package-2 portions of SSF

    Evaluation of insulation materials and composites for use in a nuclear radiation environment, phase 2

    Get PDF
    The nuclear heating of the propellant in all of the four baseline RNS configurations studied was much lower than that of the nuclear flight module configuration with the 5000-MW NERVA analyzed previously. Although the nuclear heating has been reduced, the effect of nuclear heating on the propellant as well as the effect of nuclear heating on internal structures such as antivortex baffles, screens, and sump components cannot be neglected. In addition, it was found that the present analytical precedures were not able to predict boundary layer initiation and breakoff points with the accuracy necessary to predict propellant thermodynamic nonequilibrium (stratification) and/or mixing

    Evidence for nodal superconductivity in LaFePO

    Full text link
    In several iron-arsenide superconductors there is strong evidence for a fully gapped superconducting state consistent with either a conventional s-wave symmetry or an unusual s±s_\pm state where there the gap changes sign between the electron and hole Fermi surface sheets. Here we report measurements of the penetration depth λ(T)\lambda(T) in very clean samples of the related iron-phosphide superconductor, LaFePO, at temperatures down to ∼\sim 100 mK. We find that λ(T)\lambda(T) varies almost perfectly linearly with TT strongly suggesting the presence of gap nodes in this compound. Taken together with other data, this suggests the gap function may not be generic to all pnictide superconductors

    An Experimental Investigation of Several Low-Drag Wing-Nacelle Combinations with Internal Air Flow

    Get PDF
    The results of an experimental investigation of several low-drag wing-nacelle combinations, incorporating internal air-flow systems, are presented. The external-drag increments due to these nacelles are between one-half and two-thirds of those of conventional nacelle forms. This improvement is accomplished with only minor effects on the lift and moment characteristics of the wing. The procedure employed to determine the external shape of such low-drag nacelles is considered in detail. The design of an efficient internal-flow system with or without a blower or throttle, presents no serious problems. The energy losses in the expansion before the engine and the contraction thereafter can be kept small. It is believed that these nacelles have a wide application in housing engine pusher-propeller units and, with some alteration, jet-propulsion devices. It is probable that the low external drags may not be realized if such nacelles are used with a tractor propeller because of the high level of turbulence in the propeller slipstream

    Inertial currents in isotropic plasma

    Get PDF
    The magnetospheric convection electric field contributes to Birkeland currents. The effects of the field are to polarize the plasma by displacing the bounce paths of the ions from those of electrons, to redistribute the pressure so that it is not constant along magnetic field lines, and to enhance the pressure gradient by the gradient of the bulk speed. Changes in the polarization charge during the convection of the plasma are neutralized by electrons in the form of field-aligned currents that close through the ionosphere. The pressure drives field-aligned currents through its gradient in the same manner as in quasi-static plasmas, but with modifications that are important if the bulk speed is of the order of the ion thermal speed; the variations in the pressure along field lines are maintained by a weak parallel potential drop. These effects are described in terms of the field-aligned currents in steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD limit ot two-fluid solutions and illustrated in the special case of Maxwellian plasma for which the temperature is constant along magnetic field lines. The expression for the Birkeland current density is a generalization of Vasyliunas' expression for the field-aligned current density in quasi-static plasma and provides a unifying expression when both pressure gradients and ion inertia operate simultaneously as sources of field-aligned currents. It contains a full account of different aspects of the ion flow (parallel and perpendicular velocity and vorticity) that contribute to the currents. Contributions of ion inertia to field-aligned currents will occur in regions of strong velocity shear, electric field reversal, or large gradients in the parallel velocity or number density, and may be important in the low-latitude boundary layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet

    Spitzer IRS Observations of the Galactic Center: Shocked Gas in the Radio Arc Bubble

    Full text link
    We present Spitzer IRS spectra (R ~600, 10 - 38 micron) of 38 positions in the Galactic Center (GC), all at the same Galactic longitude and spanning plus/minus 0.3 degrees in latitude. Our positions include the Arches Cluster, the Arched Filaments, regions near the Quintuplet Cluster, the ``Bubble'' lying along the same line-of-sight as the molecular cloud G0.11-0.11, and the diffuse interstellar gas along the line-of-sight at higher Galactic latitudes. From measurements of the [O IV], [Ne II], [Ne III], [Si II], [S III], [S IV], [Fe II], [Fe III], and H_2 S(0), S(1), and S(2) lines we determine the gas excitation and ionic abundance ratios. The Ne/H and S/H abundance ratios are ~ 1.6 times that of the Orion Nebula. The main source of excitation is photoionization, with the Arches Cluster ionizing the Arched Filaments and the Quintuplet Cluster ionizing the gas nearby and at lower Galactic latitudes including the far side of the Bubble. In addition, strong shocks ionize gas to O^{+3} and destroy dust grains, releasing iron into the gas phase (Fe/H ~ 1.3 times 10^{-6} in the Arched Filaments and Fe/H ~ 8.8 times 10^{-6} in the Bubble). The shock effects are particularly noticeable in the center of the Bubble, but O+3^{+3} is present in all positions. We suggest that the shocks are due to the winds from the Quintuplet Cluster Wolf-Rayet stars. On the other hand, the H_2 line ratios can be explained with multi-component models of warm molecular gas in photodissociation regions without the need for H_2 production in shocks.Comment: 51 pages, 17 figures To be published in the Astrophysical Journa

    Self-consistent theory of reversible ligand binding to a spherical cell

    Full text link
    In this article, we study the kinetics of reversible ligand binding to receptors on a spherical cell surface using a self-consistent stochastic theory. Binding, dissociation, diffusion and rebinding of ligands are incorporated into the theory in a systematic manner. We derive explicitly the time evolution of the ligand-bound receptor fraction p(t) in various regimes . Contrary to the commonly accepted view, we find that the well-known Berg-Purcell scaling for the association rate is modified as a function of time. Specifically, the effective on-rate changes non-monotonically as a function of time and equals the intrinsic rate at very early as well as late times, while being approximately equal to the Berg-Purcell value at intermediate times. The effective dissociation rate, as it appears in the binding curve or measured in a dissociation experiment, is strongly modified by rebinding events and assumes the Berg-Purcell value except at very late times, where the decay is algebraic and not exponential. In equilibrium, the ligand concentration everywhere in the solution is the same and equals its spatial mean, thus ensuring that there is no depletion in the vicinity of the cell. Implications of our results for binding experiments and numerical simulations of ligand-receptor systems are also discussed.Comment: 23 pages with 4 figure
    • …
    corecore