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Abstract. The magnetospheric convection electric field contributes to Birkeland
currents. The effects of the field axe to polarize the plasma by displacing the bounce
paths of the ions from those of electrons, to redistribute the pressure so that it is
not constant along magnetic field lines, and to enhance the pressure gradient by the
gradient of the bulk speed. Changes in the polarization charge during the convection
of the plasma are neutralized by electrons in the form of field-aligned currents that
close through the ionosphere. The pressure drives field-aligned currents through
its gradient in the same manner as in quasi-static plasma, but with modifications
that are important if the bulk speed is of the order of the ion thermal speed;
the variations in the pressure along field lines are maintained by a weak parallel
potential drop. These effects are described in terms of the field-aligned currents in
steady state, isotropic, MHD plasma. Solutions are developed by taking the MHD
limit of two-fluid solutions and illustrated in the special case of Maxwellian plasma
for which the temperature is constant along magnetic field lines. The expression ^
for the Birkeland current density is a generalization of Vasyliunas' expression for ,_,
the field-aligned current density in quasi-static plasma and provides a unifying <>
expression when both pressure gradients and ion inertia operate simultaneously as r^ w •*
sources of field-aligned currents. It contains a full account of different aspects of the ^ ~ «
ion flow (parallel and perpendicular velocity and vorticity) that contribute to the <> o ^
currents. Contributions of ion inertia to field-aligned currents will occur in regions z r> o
of strong velocity shear, electric field reversal, or large gradients in the parallel
velocity or number density, and may be important in the low-latitude boundary ^
layer, plasma sheet boundary layer, and the inner edge region of the plasma sheet.
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Introduction £
z

Birkeland currents in the Earth's magnetosphere con- o:
stitute the mechanism by which the magnetosphere is 30.
coupled to the ionosphere. The drifts of charged parti- > u —
cles, electrons and ions, in the magnetosphere carry cur- _, ^1
rent perpendicular to the magnetic field lines. The per- ; < •-
pendicular currents generally cannot close in the mag- H a.
netosphere. The requirement that the currents must [J- *•*
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close on an Alfve'n transit timescale in order to main-
tain quasi-neutrality means that they must close in the
ionosphere via Birkeland currents. The closure currents
determine the electric field in the resistive ionosphere,
which in turn determines the electric field in the mag-
netosphere, modifying the magnetospheric drifts. The
behavior and evolution of the system is thus determined
by the Birkeland currents. The convection electric field
is always present and plays a primary role in the deter-
mination of the currents. Any description of the origin
of Birkeland currents should in principle take the con-
vection electric field into account.

In the context of fluid or MHD equations the effects of
the convection electric field are described in terms of ion
inertia, the time rate of change of the ion mean velocity,
or equivalently, in terms of ion vorticity, velocity shear,
or velocity gradients. It is known [Hasegawa and Sato,
1979; Ogino, 1986; Southwood and Kivelson, 1991; Birn
and Hesse, 1991] that ion vorticity contributes to field-
aligned currents. The importance of the effects of ion
inertia in magnetospheric plasma can be surmised from
flow of plasma within different regions of the magneto-
sphere. The association of field-aligned currents [Coley,
1983], auroras [Chiu and Gorney, 1983], and the bound-
ary plasma sheet [Lyons, 1981] with convection reversals
suggest an intrinsic relation between field-aligned cur-
rents and magnetospheric flows. In the plasma-sheet
boundary layer, flow velocities of the order of hundreds
of kilometers per second in a layer about an Earth ra-
dius thick are known to persist for hours [Hones et aL,
1976; Eastman et aL, 1984, 1985]. The low-latitude
boundary layer [Eastman et al., 1976, Eastman and
Hones, 1979] shows velocity gradients that result from
the braking of the magnetosheath flow, of the order of
1000 km s"1 per Earth radius, and can be expected
to contribute to the field-aligned currents as a result
of the gradients in addition to viscous transport [Son-
nerup, 1980; Phan et al., 1989]. Flows near the inner
edge of the plasma sheet, which must turn sharply near
the shielding layer, can also be expected to show con-
tributions resulting from the ion acceleration. McFad-
den et al. [1986] observe that convection of cold plasma
above the field-aligned acceleration region can account
for their observations of precipitation at the edge of an
arc. Galperin and Volosevich [1989] have shown that
the polarization drift affects field-aligned currents if the
electric field varies on the scale of the ion gyroradius
and argue that it plays a role in the formation of nar-
row, elongated, auroral arcs.

It has long been argued that the theory of field-
aligned currents is inadequate because existing models
treat only one generator (pressure gradients, ion iner-
tia, or viscosity) at a time [Akasofu, 1984] (see also Sis-
coe and Fedder [1993]). For example, the theories of



Vasyliunas [1970], Rostoker and Bostrom [1976], and
Sonnerup [1980] are restricted to pressure gradients,
ion inertia, and viscosity, respectively, as the source of
the field-aligned currents. The development of a the-
ory that simultaneously treats all three is an important
matter for geospace global circulation models that at-
tempt to combine the different regions of the magneto-
sphere (magnetosheath, magnetopause boundary layer,
magnetosphere, and ionosphere) into a single, coupled,
unified model. The purpose of this paper is to develop
the theory of one level of unification of the generators
- the simultaneous treatment of pressure gradients and
ion inertia.- Specifically, we propose to quantify the re-
lations among the field-aligned current density at the
ionosphere, that is, the Birkeland current density, and
the convection electric field and pressure gradients in
steady state, isotropic, MHD plasma. Starting with a
two-fluid description of the plasma, we derive an ex-
pression for the current density that explicitly accounts
for convection. The expression is a straightforward gen-
eralization of those of Vasyliunas [1970] and Tverakoy
[1982] to include the effects of electric and gravitational
fields. The expression for the field-aligned current den-
sity assumes that equilibrium is established along the
magnetic field and is therefore valid on a timescale long
compared to the particle bounce time and the Alfven
transit time, the time it takes for an Alfven wave to
travel the length of a field line. The results can be ap-
plied to long-lasting Birkeland currents, but not rapidly
varying systems such as substorm currents. Both re-
strictions can be removed, but only at the expense of
algebraic complications.

The phenomenological basis for the assumption of
isotropic pressure is the observation that magnetospher-
ic plasma is often isotropic to a good approximation
[e.g., Stiles et ai, 1978]. At the same time, the plasma
is also collisionless, at least in the sense of Coulomb
collisions. We note that purely collisionless drifting
plasma generally cannot remain isotropic because the
drifts energize the parallel and perpendicular motions
of the particles at different rates (see Nines, 1963). The
essential assumption of our analysis is that the bounce
motions can be described by the behavior of collision-
less isotropic plasma but that isotropy is maintained
by some mechanism, not explicitly treated, on a drift
timescale; such mechanisms include fluid (firehose and
mirror) instabilities [Notzel et aL, 1985], chaos in the
plasma sheet [Biichner and Zelenyi, 1989], and strong
pitch angle scattering [Kennel and Petschek, 1966]. The
manner in which we take this assumption into account
is to assume that the equatorial distribution functions
are isotropic but that the bounce motions are collision-
less. The assumption of isotropy can easily be replaced
by one of gyrotropy using the methods of Heinemann



and Pontius [1991] (hereafter called HP91). To include
gyrotropic pressure in the present paper would merely
serve to complicate the presentation of what turns out
to be a relatively simple physical picture. The mathe-
matical details of time dependence and gyrotropic pres-
sure will be published elsewhere.

The principal formal result of the paper is the gen-
eralization of Vasyliunas' [1970] formula for the field-
aligned current density in quasistatic plasma to include
the effects of ion inertia, gravity, and parallel potential
drops; the reader is referred to equation (69) and those
that follow. The expression, which is based on the as-
sumption of isotropic Maxwellian distribution functions
in steady state, is somewhat more complicated than
that for quasi-static plasma but should be useful for the
computation of Birkeland currents. The principal phys-
ical results of the paper are that the convection electric
field has three main effects on Birkeland currents: it po-
larizes the plasma by displacing the bounce motions of
the ions from those of electrons, it adjusts the pressure
to satisfy equilibrium along the magnetic field, and it
enhances the pressure gradient by the gradient of the
bulk energy. The polarization causes a charge separa-
tion of ions and electrons that convects at the E x B
drift velocity. Neutralization of the excess charge by
electrons is accomplished by currents that close through
the ionosphere, that is, Birkeland currents. The paral-
lel pressure equilibrium is maintained by a weak paral-
lel electric field that survives in MHD approximation.
The pressure gradients contribute to the Birkeland cur-
rents through their gradients in the same manner as
in quasi-static plasma, but with modifications that are
important if the ion velocity is of the order of the ion
thermal speed. In addition, the gradient of the square
of the ion velocity contributes, essentially by adding to
the pressure gradient.

The paper is divided into three sections. In the first
section we develop expressions for field-aligned currents
in the terms of a two-fluid description of the plasma, as-
suming that the ion and electron pressures are isotropic
and the system is in steady state. In the second section
we take the MHD limit of the two-fluid solutions and
illustrate the results in terms of isotropic Maxwellian
distribution functions for which the temperature along
the magnetic field is constant. We conclude with a dis-
cussion of the main results.

Two-Fluid Analysis

FVom the perspective of fluid behavior of magneto-
spheric plasma the origin of the field-aligned currents
is the plasma momentum. Gradient-curvature drifts,
the ion inertia! drift, and the gravitational drift all con-



tribute to the momentum density of the plasma, and
must be balanced by the J x B force in steady state.
This balance is expressed mathematically by the mo-
mentum equation for quasi-neutral plasma

dV 1
p— + d\vP + pV<t>=-Jy.B, (1)

at c

where p is the mass density, V is the bulk velocity, "P
is the kinetic tensor in the proper frame of the plasma,
<f> is the gravitational potential, B is the magnetic field,
J is the electric current density, and c is the speed of
light; units are cgs. The tensor P is defined by

where a denotes the species of particle (electrons and
ions), m0 is the mass of the species, na is its number
density, Pa is its scalar pressure, and V0 is its mean
velocity [see Rossi and Olbert, 1970, p. 290]. The con-
vective derivative is d/dt = d/dt + V-V and reduces to
V-V in steady state.

Equation (1) determines the component of the cur-
rent density perpendicular to the magnetic field in terms
of the other quantities, that is, in terms of the perpen-
dicular drifts. By itself, it is insufficient to determine
the total current density. The parallel current density
must be determined by the requirement that the total
current density be solenoidal on an Alfven transit time
scale,

' V-J = 0, (3)

in order to prevent rapid charging of the plasma [see
Vasyliunas, 1970].

The solution of (l)-(3) for the field-aligned current
density has been approached in MHD approximation
by a number of authors. The difficulty in obtaining
solutions is the behavior of the inertial current

pc

which does not easily lend itself to mathematical analy-
sis. Rather than work in terms of MHD plasma, a nat-
ural way to include inertial effects is to follow Hasegawa
and Sato [1979] by writing separate equations govern-
ing mass and momentum of the electrons and ions. A
benefit of working with separate fluid equations is that
they lead to analogs of the one-fluid equations in which
the equilibrium plasma is described by a set of field line
constants and which can be solved in much the same
way as in quasi-static plasma. The resulting two-fluid
solution can be reduced by appropriate approximations
to the MHD limit.



The laws governing the two-fluid motions are mass
conservation,

= 0, (5)

and the momentum equation,

at
(6)

where E is the electric field. Equation (5) is valid for
each species of particle (electrons and ions) as long as
there are no sources or sinks of each species, for ex-
ample, ionization, recombination, or charge exchange.
Equation (6) is valid for plasma in which the momentum
exchange between species can be neglected and in which
the pressure can be regarded as isotropic. Anisotropic
pressure and viscosity have been neglected; they can be
taken into account but only at the expense of algebraic
complications. The assumption of isotropic pressure ne-
glects the so-called finite Larmor radius effects, which
are important in collisionless plasma on the scale of
an ion gyroradius [Macmahon, 1965; Stasiewicz, 1989,
1991). The convective derivative, da/dt = 9/St+Va-V,
depends on the species.

To develop (6) in a form amenable to analytic treat-
ment, we express the electric and magnetic fields in
terms of potentials, E = — grad$ — (l/c)8A./dt and
B = curl A, where $ is the electrostatic potential and
A is the vector potential. Then the momentum equa-
tion can be written

dUa

= - — VP0 - V (to* + ma<t> + im0 V?) , (7)
**O

where Ha = ma V0 + (qa/c)A is the "canonical momen-
tum" associated with the fluid velocity, and the "gen-
eralized vortitity"

ra = -vxna = B + ̂ u,0 (8)
la qa

is the curl of the canonical momentum, and w0 =
curlV0 is the ordinary fluid vorticity; the units have
been chosen such that F0 has the same dimensions as
B.

We seek solutions in which equilibrium is established
along the magnetic field, and therefore neglect the par-
tial time derivative. In this case the velocity perpendic-
ular to Fa is

1
— VPa

(9)



and the mass conservation equation (5) reduces to

V-n0Va = 0. (10)

It follows from (7) that

ro- [— VP0 + V (<?„$ + ma4> + AmaV0
2)l = 0. (11)

Lno J

Equations (9)-(ll) are two-fluid analogs of the quasi-
static isotropic one-fluid equations Jj_ = (c/.B2)BxVP,
divJ = 0, and B-VP = 0 that lead in quasi-static
plasma to expressions for the parallel current density in
terms of gradients of the flux-tube volume and pressure
gradients [Vasyliunas, 1970; Heinemann and Pontius,
1990 (hereafter called HP90)]. Like B, ro is divergence-
free; one may therefore associate flux tubes with Ta

analogous to magnetic flux tubes. By exploiting the
analogies, one can include the effects of ion inertia.

A solution of (11) can be obtained by writing the
number density and pressure in the forms

rc0(x) = —3/7
771(1 *

•U(S\Ci)d£ (12)

P.(x) = -^T / (£

(13)

where £ represents particle total energy and fa(£, C,-)
is the particle distribution function expressed as a func-
tion of particle total energy and arbitrary constants, Cj,
that are used to specify the equatorial distribution func-
tion. These are appropriate for plasma that is isotropic
in the proper frame of each species (i.e., the frame in
which the velocity of each species vanishes). One can
verify by direct substitution that these solve (11) if it
is assumed that ra-VCj = 0.

The condition IV VC,- = 0 is related to the polar-
ization of the plasma by the convection electric field.
Its physical significance can be sought in terms of a
Vlasov description of the bounce motions of the parti-
cles. From the guiding-center theory of plasma motions
[e.g., Northrop, 1963] it can be shown that, if the Ex B
drift velocity has a curl, then the guiding center velocity
is given by

B i q -LJ

where VB = cExB/S2 represents the E x B drift and
the ellipsis includes the E x B, gradient, curvature,
and g x B drifts. The second term, which is equiva-
lent to the polarization drift, means that particles are



displaced in their bounce motions by a distance that
depends on the perpendicular vorticity. At an intuitive
level this means that distribution function is constant
along field lines defined by B + (m0c/g0)(curl VE)JL as
are the constants characterizing the distribution func-
tion. A tedious calculation (not given) shows that finite
gyroradius corrections lead to ro-VC,- = C?[(mac/ga)

2],
where F0 is based on the mean velocity of the species
including the "magnetization" contribution to velocity,
V1M) = -(c/naqa) curl (P0B/52). At this order of an
expansion in powers of mac/qa this result does not dis-
tinguish between the E x 5-drift and the perpendicular
component of the mean velocity of the species. It does,
however, indicate the physical basis of the solution of
(11) by (12) and (13) lies in the polarization displace-
ments of the particles in their bounce motions. More-
over, since it will ultimately be used only in the MHD
limit, which also does not distinguish between VE and
V0j_, it is entirely adequate for our purposes to assume
that ro-VCj = 0.

As an example of (12) and (13), consider a convected
Maxwellian particle distribution

f M ~ n°'e e-ma(V-Va.e)
a/2ra.e

~

where na<e is the equatorial number density, T0,e is the
equatorial temperature in ergs, and V0i<. is the equa-
torial velocity. Because of the assumed isotropy in the
moving frame, this can be expressed in terms of the
total energy and equatorial constants:

(27rT0,e/m0)3/2

9o_e_

J

(16)

The number density and pressure that follow from in-
tegration of (12) and (13) are

n = ru e~9o^*0~*0i<5^To'e (17)

Pa = P0iBe-«a(*a-*a,e)/T0,e] (jg)

where #0 represents the "effective potential" defined by

(In writing (17) and (18), the effects of the loss cone
have been neglected so that the pressure can be assumed
to be isotropic all the way to the ionosphere. While
this assumption is incorrect in application to magneto-
spheric plasma, the magnitude of the error involved is



small, a few percent; see HP91 for an explicit evaluation
in quasi-static plasma.) The number density and pres-
sure are explicit functions of the equatorial constants
na,e, &e, <t>e, Va,e, and Ta)(5. The meaning of (17) and
(18) is that they are the number density and pressure
at a point that is connected by field lines of ro to the
equatorial crossing point with values n0_e> $e, <£e, V0|<.,
and T0,e.

Equations (12) and (13) solve the parallel equilibrium
problem and thereby determine the three-dimensional
distribution of n0 and Pa for given potentials and equa-
torial distribution functions. The distributions of n0

and P0 in turn determine the plasma drift velocities.
Differentiation of (13) and use of (12) (or (18) and (17))
to identify n0 shows that the following differential rela-
tions hold: 8Pa/d& = — qana, dPa/d<(> = — man0, and
dPa/d^V* = -m0n0. These differential relations show
that the gradient of the pressure, obtained by taking
the gradient of (13), is

= -n0V

d<t> dva

dP

(20)

Because the parallel gradient of each Cj vanishes, that
is, ro-VC,- = 0 + O[(m0c/<?a)

2], (20) satisfies parallel
equilibrium (11). It then follows from (9) that the per-
pendicular velocity is given by

This expression for the perpendicular velocity, which
is expressed in terms of quantities that are constant
along F0, can be used to determine the field-aligned
currents in the plasma. It is in a form analogous to the
current density perpendicular to the magnetic field in
MHD plasma and can be solved for the total velocity
in the same manner. The solution is (see HP91 for
methodology)

9an0V0(x) = c £ VVOJ. X VC,, (22)
3

where

(23>
and the label F on the integral sign means that the
integration is taken along ra from the equator to x.
This solution is appropriate for a north-south sym-
metric magnetosphere-ionosphere system such that the



Birkeland currents at the northern and southern ends of
the flux tubes are identical. In general, there is an addi-
tional force-free current aB running from ionosphere to
ionosphere. While the results can be derived for more
general configurations, including open field lines, we as-
sume a symmetric closed field line situation for simplic-
ity and simultaneously neglect any force-free current.
The divergence of (22) is zero and its perpendicular
component satisfies (9), showing that (22) is a solution
of (5) and (6) in steady state, as required.

The current density is given by the sum of (22) over
species:

(24)

The Birkeland current density, that is, the vertical cur-
rent density at the ionosphere, determined by methods
identical to those of HP91, is

X V^C-j, (25)

where ra)C and Forii are evaluated at the equator and
ionosphere, respectively, the subscript r means the ra-
dial component of a vector, V0,e is a two-dimensional
gradient evaluated at the equatorial crossing point of
the field line of ro, and Vaj is evaluated by integra-
tion from the equator to the ionosphere. The subscript
e denotes the equatorial crossing point of field line of
the generalized vorticity and the subscript o will de-
note the equatorial crossing point of a magnetic field
line (see Figure 1).

To demonstrate the physical content of (22)-(25), we
give an example in terms of Maxwellian plasma. It
follows from (17) and (18) that the derivatives of the
pressure with respect to the constants are dPa/dPa e =
Pa/Pa,e = Pa/Po,e, dPa/d$e = qana, dPJdfc =
mana, dPa/d±V?e = man0, and dPa/dTat<. = no9o(*0

-*0,e)/T0,e. Here we have taken P0i<! and Ta,e to be
independent constants; the equatorial number density
is not independent but is related to them by P0i<s =
na,eTa,e. The charge flux density (22) is

r Pa,e T

+ V xL
?.(*.-^)* y
r Jo,e * o /

(26)
If parallel electric fields, gravity, and ion inertia are ne-
glected, this reduces to

<7«n0V0 = a,o

10



(27)

where the label B on the integral sign means that the
integration is taken along the magnetic field from the
equator, the subscript o refers to the equatorial crossing
point of the magnetic field line; we have assumed that
the number density is constant along the magnetic field
in the absence of a parallel electric field. The perpen-
dicular component is the usual perpendicular velocity,
V0± = cExB/B2 + (c/n0g0B

2)BxVP0. The current
density is given by the sum over species

(28)

where P0 is the sum of the electron and ion pressures at
the equator; rj is the charge density and can be assumed
to vanish in quasi-neutral plasma. The first term in (28)
is Vasyliunas' expression for the total current density
due to pressure gradients in isotropic plasma.

Equations (24) and (25) are formally exact, that is,
(24) satisfies (1) and (3) exactly (recall, however, that
Fa-VCj = O[(mac/qa)

2]). However, they are not very
useful for analysis or modeling of field-aligned currents.
As can be seen by comparison of (26) and (27), the ef-
fects of a convection electric field are not only the addi-
tion of explicit terms involving the velocity, but changes
in the bounce paths as indicated by the differences in
integration paths and equatorial values. The difference
of the bounce paths, which reflects the effect of the vor-
ticity on the bounce motions of the ions and contains
information about the polarization of the plasma, is rel-
atively small. The departure at the ionosphere from the
field line occupied by a particle at its equatorial crossing
point is of the order of the ratio of the equatorial Ex B
drift velocity to the equatorial gyrofrequency, about 10
km for hydrogen and a 100 km for oxygen, smaller than
desirable for numerical simulations. On the other hand,
the smallness of the difference in the bounce paths al-
lows the development of accurate approximations, to
which we now turn.

MHD Limit of Two-Fluid Solutions

Introduction

The problem of the field-aligned current density is
normally approached from the perspective of the MHD
momentum equation

P^- + VP + pV4>=-3xB. (29)
at c

11



If inertia and gravity are neglected the solution for the
Birkeland current density is [Vasyliunas, 1970]

Jr,i = - l B o ' V o X VoPo (30)

Here P>r,,- is the radial component of the magnetic field
at the ionosphere, the subscript o means evaluation at
the magnetospheric equator, and V0 is a two-dimensional
gradient in the equatorial plane.

The essential feature that allows the integration along
field lines to give (30) is the constancy of the pressure
along the magnetic field, B-VP = 0. The inclusion of
inertia would be an easy matter if there were an analo-
gous simple quantity that was constant along the mag-
netic field; however, there appears to be no simple field
line constant in that case. To see this, note that it
follows from (29) in steady state that

B-VP+pB-V (iy2 + <£) -pB-Vx (VxV) = 0. (31)

In steady state MHD approximation, with curl-free elec-
tric field related to the bulk velocity by E = -VxB/c,
the third term is — pV- [Vx (VxB)], and therefore the
parallel equilibrium equation is

B-VP -I- pB-V (iy2 - Vj? + <t>) + pV- (BVj| VL) = 0.
(32)

Not only is the pressure not constant along the magnetic
field, but there appears to be no simple generalization
of the constant pressure relation in terms of other con-
stants. One can show that an equivalent form of the
parallel equilibrium condition is

-B-VP+B-V (-±V* + <f> + V-V fv\\di\ =0. (33)

if P = P(p) along B. The integral of the parallel veloc-
ity is evaluated by integration along the magnetic field
from the equator to arbitary points along the magnetic
field line. The derivation of (33) from (32) is straight-
forward but tedious. It is done by using the divergence
properties of the last term of (32). The only possibly
obscure step is to integrate the right-hand side over the
surface of a flux tube, use Gauss' law to convert it to
a surface integral, substitute the E x B drift, and per-
form the surface integral by the methods of HP90. The
result is

(5VJ, Vj.) = - V||<tf <», (34)

where $ is assumed constant along field lines, the con-
tour integral is taken around any right-handed loop in

12



the plasma, and the integral over d£ is taken from the
equatorial plane to the surface defining the ends of the
flux tube. Applying Stokes1 theorem to the right-hand
side of (34) one finds

[ = -c

(35)

Combining this result, evaluated at the end of the flux
tube with n = B/5 , with the results of the more trans-
parent integrals of the remaining terms of (32) gives
(33).

MHD Limit

The direct solution of (29) for the parallel current
density presents insurmountable difficulties. Rather
than continue with that analysis, we solve the same
problem by taking the MHD limit of the two-fluid so-
lutions for the current density. The method is to ex-
pand (24) in terms of the particle mass to charge ra-
tios. By retaining only lowest-order terms consistent
with the MHD approximation we obtain solutions for
the MHD current density. To do this, we reexpress (24)
in terms of integrals along the magnetic field lines and
constants evaluated at the equatorial crossing points of
magnetic field lines rather than field lines of the general-
ized vorticity, by expanding each to order ea = mac/qa.
The approximation of Cj is based on the fact that it
is constant along field lines of the generalized vorticity,
Ta-VC, = O(el), (see discussion after (13)). By ex-
pressing ra in terms of the magnetic field and vorticity,
one can write this as the differential equation

where i represents arclength along the magnetic field.
To order e0 the constant Cj appearing on the right-hand
side, which refers to the equatorial crossing point of the
field lines of the generalized vorticity, can be replaced
by Cj|0, which refers to the equatorial crossing point of
the magnetic field line. Integrating along the magnetic
field from the equator one obtains

C,. = C,,e = C,,0 -
a JB

(37)

(where the label B on the integral sign means that the
integral is taken along the magnetic field to arbitrary
points in the plasma). The integration constant on the
right-hand side is determined by the fact that in the
limit that the evaluation point approaches the equator
the field lines of the generalized vorticity and magnetic

13



field are identical. In a similar manner, one can show
that

Jr dci ra

+ 0(4), (38)
where dP.de

dc iB- (39)

Substituting these results into (24), one finds for the
current density J(x) = J<0>(x) + J^fr), where

(40)

xVC,0. (41)

These hold at arbitrary points, x, in the plasma; so-
lutions can be determined, in principle, by construct-
ing the values of the integrals and field line constants
as functions of the coordinates by integration from the
equator to arbitrary points in the plasma and then tak-
ing their local gradients. This is the general form of
expansion of the current density and serves as the basis
for evaluation of particular cases (i.e., specific distribu-
tion functions).

Equations (40) and (41) can be used to determine the
Birkeland current density. When evaluated at the iono-
sphere, each integral appearing on the right-hand side
is integrated along magnetic field lines from equator to
ionosphere and therefore can be regarded as a function
of Euler potentials a and 0 that determine the mag-
netic field according to B = VaxV/3 [see Stern, 1970].
By expressing J in terms of a and /?, one finds for the
Birkeland current density

,(o)
Jr,t

_ JBr.il
— ~c

/(I) _
-

xV 0 C,- 0 . (43)
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Solutions for the Birkeland current density can be de-
termined in much the same manner as the current den-
sity in three dimensions, the difference being that the
integrals must be evaluated by integration along the
magnetic field from the equator to the ionosphere.

Maxwellian Particle Distributions

Equations (40) and (41) are expressed in completely
abstract forms that depend on the constants character-
izing the particle distribution functions. To use them
for the computation of currents, one must state the
distribution functions as functions of the total energy
and the constants. Assume, for example, that each
equatorial distribution function is a converted isotropic
Maxwellian (16). The number density and pressure of
each species are to be determined by integration of (12)
and (13). To perform the integration, the limits of in-
tegration must be considered. Two natural cases are
potentials that increase or decrease monotonically from
the equator. Of these, we treat only the former. In the
latter case the particles see a potential maximum at the
equator and are presumably lost in the ionosphere. The
monotonically increasing potential is by no means the
most general case. Nonmonotonic potentials are possi-
ble and the reader should be aware of this restriction
on our results. For monotonically increasing effective
potential the lower limit of integration is the local (i.e.,
at the location t along the field line) value of the effec-
tive potential; the upper limit is £ = oo. The number
density and pressure that result from the integration
are given by (17) and (18). Substitution for the partial
derivatives with respect to the constants (see the text
introducing (26)) into (40) leads to the current density

+ V X V (qa$0 + ma<t>0 + i

(44)

(cf. (26)). The integrals are along magnetic field lines
from the equator to arbitrary points in the plasma; the
subscript B on the integral sign will be omitted here-
after. At the same level of approximation the velocity
that follows from (22) summed over species is

(45)

that is, the dominant contribution has been assumed
to be from the electric field gradient, with the pressure,
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gravitational potential, and velocity gradients neglected
as being of one higher order in e+. For weak parallel
potential drops the perpendicular component is the E x
B drift velocity, Vj_ = V^. The parallel component of
the velocity generally does not vanish [see Schindler and
Birn, 1987).

Solutions that satisfy the condition of quasi-neutrality
are determined by the condition that the ion and elec-
tron number densities be equal, that is, n = n+ = n_,
where ± denote ions and electrons, respectively. Ac-
cording to (17), this condition is to be satisfied by the
solution of

_ _—e(*j.—*+ e)/T+ e _ _e(*_— *_ e)/T- & f A C \n+<ee ^ ^ T.c/» -r.c = n_>ee
 v • • v*o)

(where e is the charge of the ions, assumed singly ion-
ized) anywhere in the plasma as long the effective poten-
tials of both ions and electrons increase monotonically
with distance from the equator. According to (38), the
relation between n±ie and n±)0 = n0 is

m±c / /. . n- •» "~ . /o/-2 \ t^\

where w = curl V is to be determined from (45). The
condition of quasi-neutrality is then

where m = m+ + m_ is the sum of the ion and electron
masses. The potentials on the left-hand side can be
referred to the equatorial crossing point of the magnetic
field line by writing

e(*+ -*+.,) e(*. -*_,„)

me f. de
= __y(u,.vno)-

T+,e T_,e

+ 0(4)-

In the last two terms on the right-hand side we retain
only the electrostatic potential, regarding gravity and
kinetic energy gradients as one higher order in e. Then,
by (38), they can be expressed

(50)
T±,e T±t,
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By an analysis similar to that outlined in (34) and (35),
one can show that

)f = — (v2 - v0
2)+Iv.v| v^di. (si)

The solutions of (49)-(51) for the effective potentials
are

J±,e ^-t

' , (52)

where T0 is the mean value of the electron and ion tem-
peratures at the equator. By (17) and (18) the number
density and pressure are

$ (V2 - V0
2) - (<j> - 4>0)

(53)

(54)

valid if — V2/2 + <j> + V-V / V\\d6 increases mononton-
ically with increasing distance from the equator (see
(52)). Differentiation of (54) along the magnetic field
leads to (33), showing that (53) and (54) satisfy MHD
parallel equilibrium (since, by (53) and (54), P = P(p)).
The associated electrostatic potential drop is

V2\-V0)

(55)

(The integral, as usual, is determined by integration
from the equator to arbitrary points in the plasma).
The entropy per unit mass, which is useful in writing
the results, follows from the addition property of the
entropy, ps = £o namasa, or

I, (56)
J J

where
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and the ions and electrons have each been character-
ized by three degrees of freedom. Recognizing that the
charge density is zero in quasi-neutral plasma, the cur-
rent density (44) can now be written

/

di
p(s-3 o)— XVT0

+ 0(e+). (58)

The current density J^1) can be treated in an analo-
gous manner. We retain only those terms proportional
to gradients of the electrostatic potential, regarding
those involving thermal properties and gravitation as
being of a higher order in en. Then J^1) is

(59)

Since neither the number density nor vorticity depends
on the species in MHD approximation, (59) can be
summed to yield

+ V / (u;-VM)— xV$J +O(t+), (60)
J " \

where

is the mass per unit flux, a three-dimensional function
of the coordinates determined by integration along mag-
netic field lines from the equator to x. The first term
can be written using (51). Using the fact that the vor-
ticity has no divergence, one can rewrite the second
term:

= /V-(VBxV||M-fV||XVJ.M

di
^. (62)

The first term of (62) can be expressed in terms of the
electric field and the last can be integrated immediately.
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The result is

(u,-VM) ̂  = - 1 V- (|£EX - V,eg X VXM ) |

(63)

where we have used VyM = />/B. In ordinary dielec-
tric media, characterized by the plasma low-frequency
dielectric constant l+4irp<?/B2, the polarization charge
density is

'(«)

In the present case the change in the number per unit
flux on a given magnetic field line due to the presence
of an electric field, obtained from (38), is

J B (Jr Ta JB B )

= m°° f (u .•
9a J \

That is, in comparison with the situation in the absence
of an electric field, the particles are displaced from the
field line, and have a different flux tube content on the
given field line. The change in the charge per unit flux
is

and represents the polarization charge per unit flux in
the presence of an electric field. Consequently, by anal-
ogy with ordinary dielectric media, we define the flux
tube average of the polarization charge density by

With these identifications the current density J^ is

-cV f
B

(68)

The total current density is given by the sum of (58)
and (68):

= c V / -£-:
Po

f
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_ \7 / v \7<I> Ivj B xv^0j (69)

As previously, solutions can be determined by con-
structing, by integration from the equator to arbitrary
points in the plasma, the integrals and equatorial con-
stants as three-dimensional functions of the coordinates
and taking the local gradients. The Birkeland current
density, obtained by mapping the radial current density
at the ionosphere to equatorial properties as in (42) and
(43), is

/• <^
J*—>B*™

(70)

where V< and V< are evaluated at the ionosphere. The
nature of the solution is similar to that given by (69)
except that the integrals are to be constructed by inte-
gration to the ionosphere. If the convection velocity and
gravity are neglected, (70) depends only on the pressure
gradient and reduces to Vasyliunas' [1970] formula (see
(30)). The new information contained is the effects of
the convection electric field.

Verification of the Formula

A necessary condition for (69) and (70) to be a cor-
rect description of currents in MHD plasma is that (69)
has the same perpendicular current density as that of
the MHD momentum equation (29) and simultaneously
satisfy current continuity (3). That (69) solves (3) is
obvious from the fact that its divergence is zero. In or-
der to help convince the reader that our result is indeed
a solution for the currents in MHD plasma, we system-
atically reduce (69) to (29) (including the effects of the
gravitational field). To do this, we write (69) in the
form

-cVMxV

20



+£?(«+), (71)

that is, as the sum of (58) and (60). The perpendicular
current density is

= + p(s - s0) VT0 - pV / (u».V$o) -5-
I ij

+ c(u>-V$0) VM - c(w-VM) V$0

+ O(c+), (72)

where we have used the facts that B-VC0 = 0 for any
field line constant C0 and

B-V

for any F. Now, it follows from (45) that

c(w.VM)V$0

(74)

Combining (51), (72), and (74), one obtains

- v-v /"

(75)

The gradient of the pressure that follows from (54) is

VP = -^-
Po

(76)

where we have used P0 = 2710^0, the factor of 2 follow-
ing from the definition of the number density as equal
to that of either ions or electrons and the definition of
the temperature as the mean value of those of ions and
electrons. The perpendicular current density is there-
fore
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= -^B X [VP + p(V.V)V + pVfl

+ <?(«+), (77)

that is, the perpendicular component (69) is just equal
to the MHD current density in steady state.

Discussion

In this paper we have developed a description of
Birkeland currents in isotropic MHD plasma to include
the effects of ion inertia. The results are valid for
timescales long compared to the Alfv6n transit time and
the particle bounce time. Beginning with a description
of the currents in isotropic plasma that is collisionless
in its bounce motions, we passed to the MHD limit.
The resulting expression, which is specific to isotropic
Maxwellian distributions for both ions and electrons,
accounts for the currents due to ion inertia as well as
those due to pressure gradients in steady state.

The forms of the expressions for the current den-
sity can be thought of as generalizations of Vasyliu-
nas' [1970] and Tverskoy's [1982] expressions. They
have been integrated along the magnetic field and de-
pend on gradients of magnetospheric plasma in much
the same manner. The difference in detail, that deriva-
tives of the local velocity, not just equatorial quanti-
ties, appear in (69), appears to be harmless. While this
complicates the computation of currents near the equa-
tor, Birkeland currents (70) can be computed in the
same manner as with Vasyliunas' formula. For a given
magnetic field model, for example, Tsyganenko [1987]
or R. Hilmer and G.-H. Voigt (A magnetospheric mag-
netic field model driven by dynamically varying phys-
ical input parameters, submitted to Journal of Geo-
physical Research, 1994) the different contributions to
(69), including the polarization current density, can be
mapped to the ionosphere to provide models of field-
aligned currents. The computation is straightforward
if it is assumed that the equatorial distribution func-
tion and electrostatic potential are known and that the
parallel velocity is not important. To a first approxi-
mation, regarding the field lines as equipotential, the
E x B drift velocity is then determined along the mag-
netic field, along with the potential drop and the mass
density and pressure.

The expressions for the current density are somewhat
more complicated than the similar expressions for the
current density in quasi-static plasma [ Vasyliunas, 1970;
HP90]. There are four separate contributions to the
field-aligned currents: the pressure gradient, the gradi-
ent of the kinetic energy per particle, the gravitational
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drift, and convection of polarization charge. The com-
plications arise because equilibrium along the magnetic
field is not characterized by constant pressure, as in
quasi-static plasma, but depends on the electric field.

The parallel component of the polarization current
density (the last term of (69)) represents the diversion of
polarization charge. If the polarization current density
is defined as

(78)

then the parallel current density is

(79)

and is equal to the time rate of change of the polariza-
tion charge density. The origin of the Birkeland current
density associated with the polarization is the neutral-
ization of polarization charge by electrons. The convec-
tion electric field has two simultaneous effects in this
connection: it polarizes the plasma by displacing the
bounce motions of ions from electrons and it convects
both ions and electrons at the E x B drift velocity.
Changes in the convection electric field or the density
along the drift path change the polarization charge in a
given flux tube. To maintain quasi-neutrality, electrons
must move to neutralize the total charge. They can-
not accomplish the neutralization by the E x B drift,
which is in a direction perpendicular to the polarization
displacement. Instead, they must neutralize the excess
charge by closing through the ionosphere.

The effects of polarization are normally discussed in
terms of the parallel component of the ion vorticity,
u>|| = B-w/JB. In general, there are separate contribu-
tions due to the parallel and perpendicular components
of the vorticity. The contribution of polarization to the
Birkeland current density written in terms of the par-
allel and perpendicular components of the vorticity is

<j, (80)

The contribution of the parallel vorticity is familiar, al-
beit in slightly different form, from the work of Hasega-
wa and Sato [1979]. Physically, it corresponds to the
change in the volume occupied by ions in a given mag-
netic flux tube due to the presence of an electric field.
The second term, explicitly neglected in their analysis,
describes the effects of the perpendicular vorticity and
describes the effects of the displacement of bounce paths
of the ions from those of electrons.

The present results provide a direct way of calculating
within a numerical model sources of current due to gra-
dients of the velocity which can reasonably be expected
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to make significant contributions in boundary layers and
near the inner edge of the plasma sheet. The appli-
cation of the resulting expressions may be useful for
the analysis of Birkeland currents that originate in the
low-latitude boundary layer, the plasma sheet boundary
layer, and possibly the inner edge region of the plasma
sheet. In the low-latitude boundary layer the solar wind
velocity brakes from a few hundred kilometers per sec-
ond tailward to a few kilometers per second earthward
with flow speeds of the order of the ion thermal speed.
Quite aside from the effects of viscosity, the velocity
shears are likely to generate significant Birkeland cur-
rents. In the plasma sheet boundary layer, parallel flows
of the order of the ion thermal speed are observed on
closed field lines and, according to Schindler and Birn
[1987], have a large gradient near the separatrix be-
tween open and close field lines. Reference to (70) and
(62) suggests that this region is a source of field-aligned
current. A further possible source is near the inner edge
of the plasma sheet. Westward ion drift paths from the
tail adjoin eastward drift paths that circulate the Earth
[see Erickson et al., 1991]. Across this layer the electric
field reverses and the density need not be continuous,
making it a candidate for Birkeland currents that orig-
inate in the polarization of the plasma.
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Figure 1. Schematic illustration of the relation be-
tween ion bounce paths and the magnetic field. The
perpendicular electric field points outward, as indicated.
Ions are displaced from the magnetic field in the di-
rection of the perpendicular electric field and follow a
bounce trajectory indicated by the dashed line. Elec-
trons, because of their small mass, essentially follow the
magnetic field, indicated by the solid line. The equato-
rial crossing point of the ion bounce path is indicated
by e and that of the magnetic field by o.

28



tLU




