414 research outputs found

    Effective medium theory of elastic waves in random networks of rods

    Full text link
    We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining novel wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector kk the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels or trabecular bone.Comment: 14 pp., 3 fig

    Initial Conditions for a Universe

    Full text link
    In physical theories, boundary or initial conditions play the role of selecting special situations which can be described by a theory with its general laws. Cosmology has long been suspected to be different in that its fundamental theory should explain the fact that we can observe only one particular realization. This is not realized, however, in the classical formulation and in its conventional quantization; the situation is even worse due to the singularity problem. In recent years, a new formulation of quantum cosmology has been developed which is based on quantum geometry, a candidate for a theory of quantum gravity. Here, the dynamical law and initial conditions turn out to be linked intimately, in combination with a solution of the singularity problem.Comment: 7 pages, this essay was awarded First Prize in the Gravity Research Foundation Essay Contest 200

    Quantum creation of an Inhomogeneous universe

    Get PDF
    In this paper we study a class of inhomogeneous cosmological models which is a modified version of what is usually called the Lema\^itre-Tolman model. We assume that we have a space with 2-dimensional locally homogeneous spacelike surfaces. In addition we assume they are compact. Classically we investigate both homogeneous and inhomogeneous spacetimes which this model describe. For instance one is a quotient of the AdS4_4 space which resembles the BTZ black hole in AdS3_3. Due to the complexity of the model we indicate a simpler model which can be quantized easily. This model still has the feature that it is in general inhomogeneous. How this model could describe a spontaneous creation of a universe through a tunneling event is emphasized.Comment: 21 pages, 5 ps figures, REVTeX, new subsection include

    Quantum Cosmology of Kantowski-Sachs like Models

    Full text link
    The Wheeler-DeWitt equation for a class of Kantowski-Sachs like models is completely solved. The generalized models include the Kantowski-Sachs model with cosmological constant and pressureless dust. Likewise contained is a joined model which consists of a Kantowski-Sachs cylinder inserted between two FRW half--spheres. The (second order) WKB approximation is exact for the wave functions of the complete set and this facilitates the product structure of the wave function for the joined model. In spite of the product structure the wave function can not be interpreted as admitting no correlations between the different regions. This problem is due to the joining procedure and may therefore be present for all joined models. Finally, the {s}ymmetric {i}nitial {c}ondition (SIC) for the wave function is analyzed and compared with the ``no bouindary'' condition. The consequences of the different boundary conditions for the arrow of time are briefly mentioned.Comment: 21 pages, uses LaTeX2e, epsf.sty and float.sty, three figures (50 kb); changes: one figure added, new interpretation of quantizing procedure for the joined model and many minor change

    Quantum state correction of relic gravitons from quantum gravity

    Get PDF
    The semiclassical approach to quantum gravity would yield the Schroedinger formalism for the wave function of metric perturbations or gravitons plus quantum gravity correcting terms in pure gravity; thus, in the inflationary scenario, we should expect correcting effects to the relic graviton (Zel'dovich) spectrum of the order (H/mPl)^2

    Prognostic association of depression following myocardial infarction with mortality and cardiovascular events:A meta-analysis of 25 years of research

    Get PDF
    AbstractObjectiveA meta-analysis of over 25 years of research into the relationship between post-myocardial infarction (MI) depression and cardiac prognosis was conducted to investigate changes in this association over time and to investigate subgroup effects.MethodA systematic literature search was performed (Medline, Embase and PsycINFO; 1975–2011) without language restrictions. Studies investigating the impact of post-MI depression on cardiovascular outcome, defined as all-cause mortality, cardiac mortality and cardiac events within 24 months after the index MI, were identified. Depression had to be assessed within 3 months after MI using established instruments. Pooled odds ratios (ORs) were calculated using a random effects model.ResultsA total of 29 studies were identified, resulting in 41 comparisons. Follow-up (on average 16 months) was described for 16,889 MI patients. Post-MI depression was associated with an increased risk of all-cause mortality [(OR), 2.25; 95% confidence interval [CI], 1.73–2.93; P<.001], cardiac mortality (OR, 2.71; 95% CI, 1.68–4.36; P<.001) and cardiac events (OR, 1.59; 95% CI, 1.37–1.85; P<.001). ORs proved robust in subgroup analyses but declined over the years for cardiac events.ConclusionsPost-MI depression is associated with a 1.6- to 2.7-fold increased risk of impaired outcomes within 24 months. This association has been relatively stable over the past 25 years

    Period-doubling bifurcation in strongly anisotropic Bianchi I quantum cosmology

    Get PDF
    We solve the Wheeler-DeWitt equation for the minisuperspace of a cosmological model of Bianchi type I with a minimally coupled massive scalar field ϕ\phi as source by generalizing the calculation of Lukash and Schmidt [1]. Contrarily to other approaches we allow strong anisotropy. Combining analytical and numerical methods, we apply an adiabatic approximation for ϕ\phi, and as new feature we find a period-doubling bifurcation. This bifurcation takes place near the cosmological quantum boundary, i.e., the boundary of the quasiclassical region with oscillating ψ\psi-function where the WKB-approximation is good. The numerical calculations suggest that such a notion of a ``cosmological quantum boundary'' is well-defined, because sharply beyond that boundary, the WKB-approximation is no more applicable at all. This result confirms the adequateness of the introduction of a cosmological quantum boundary in quantum cosmology.Comment: Latest update of the paper at http://www.physik.fu-berlin.de/~mbach/publics.html#

    Neuronopathic Gaucher disease in the mouse: viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits

    Get PDF
    Gaucher disease is caused by defective acid β-glucosidase (GCase) function. Saposin C is a lysosomal protein needed for optimal GCase activity. To test the in vivo effects of saposin C on GCase, saposin C deficient mice (C−/−) were backcrossed to point mutated GCase (V394L/V394L) mice. The resultant mice (4L;C*) began to exhibit CNS abnormalities ∼30 days: first as hindlimb paresis, then progressive tremor and ataxia. Death occurred ∼48 days due to neurological deficits. Axonal degeneration was evident in brain stem, spinal cord and white matter of cerebellum accompanied by increasing infiltration of the brain stem, cortex and thalamus by CD68 positive microglial cells and activation of astrocytes. Electron microscopy showed inclusion bodies in neuronal processes and degenerating cells. Accumulation of p62 and Lamp2 were prominent in the brain suggesting the impairment of autophagosome/lysosome function. This phenotype was different from either V394L/V394L or C−/− alone. Relative to V394L/V394L mice, 4L;C* mice had diminished GCase protein and activity. Marked increases (20- to 30-fold) of glucosylsphingosine (GS) and moderate elevation (1.5- to 3-fold) of glucosylceramide (GC) were in 4L;C* brains. Visceral tissues had increases of GS and GC, but no storage cells were found. Neuronal cells in thick hippocampal slices from 4L;C* mice had significantly attenuated long-term potentiation, presumably resulting from substrate accumulation. The 4L;C* mouse mimics the CNS phenotype and biochemistry of some type 3 (neuronopathic) variants of Gaucher disease and is a unique model suitable for testing pharmacological chaperone and substrate reduction therapies, and investigating the mechanisms of neuronopathic Gaucher disease

    Probing the unusual anion mobility of LiBH_4 confined in highly ordered nanoporous carbon frameworks via solid state NMR and quasielastic neutron scattering

    Get PDF
    Particle size and particle–framework interactions have profound effects on the kinetics, reaction pathways, and even thermodynamics of complex hydrides incorporated in frameworks possessing nanoscale features. Tuning these properties may hold the key to the utilization of complex hydrides in practical applications for hydrogen storage. Using carefully synthesized, highly-ordered, nanoporous carbons (NPCs), we have previously shown quantitative differences in the kinetics and reaction pathways of LiBH_4 when incorporated into the frameworks. In this paper, we probe the anion mobility of LiBH_4 confined in NPC frameworks by a combination of solid state NMR and quasielastic neutron scattering (QENS) and present some new insights into the nanoconfinement effect. NMR and QENS spectra of LiBH_4 confined in a 4 nm pore NPC suggest that the BH_4− anions nearer the LiBH_4–carbon pore interface exhibit much more rapid translational and reorientational motions compared to those in the LiBH_4 interior. Moreover, an overly broadened BH_4− torsional vibration band reveals a disorder-induced array of BH_4− rotational potentials. XRD results are consistent with a lack of LiBH_4 long-range order in the pores. Consistent with differential scanning calorimetry measurements, neither NMR nor QENS detects a clear solid–solid phase transition as observed in the bulk, indicating that borohydride–framework interactions and/or nanosize effects have large roles in confined LiBH_4
    corecore