646 research outputs found

    The Process-Interaction-Model: a common representation of rule-based and logical models allows studying signal transduction on different levels of detail

    Get PDF
    BACKGROUND: Signaling systems typically involve large, structured molecules each consisting of a large number of subunits called molecule domains. In modeling such systems these domains can be considered as the main players. In order to handle the resulting combinatorial complexity, rule-based modeling has been established as the tool of choice. In contrast to the detailed quantitative rule-based modeling, qualitative modeling approaches like logical modeling rely solely on the network structure and are particularly useful for analyzing structural and functional properties of signaling systems. RESULTS: We introduce the Process-Interaction-Model (PIM) concept. It defines a common representation (or basis) of rule-based models and site-specific logical models, and, furthermore, includes methods to derive models of both types from a given PIM. A PIM is based on directed graphs with nodes representing processes like post-translational modifications or binding processes and edges representing the interactions among processes. The applicability of the concept has been demonstrated by applying it to a model describing EGF insulin crosstalk. A prototypic implementation of the PIM concept has been integrated in the modeling software ProMoT. CONCLUSIONS: The PIM concept provides a common basis for two modeling formalisms tailored to the study of signaling systems: a quantitative (rule-based) and a qualitative (logical) modeling formalism. Every PIM is a compact specification of a rule-based model and facilitates the systematic set-up of a rule-based model, while at the same time facilitating the automatic generation of a site-specific logical model. Consequently, modifications can be made on the underlying basis and then be propagated into the different model specifications – ensuring consistency of all models, regardless of the modeling formalism. This facilitates the analysis of a system on different levels of detail as it guarantees the application of established simulation and analysis methods to consistent descriptions (rule-based and logical) of a particular signaling system

    A novel brain receptor is expressed in a distinct population of olfactory sensory neurons

    Get PDF
    Three novel G-protein-coupled receptor genes related to the previously described RA1c gene have been isolated from the mouse genome. Expression of these genes has been detected in distinct areas of the brain and also in the olfactory epithelium of the nose. Developmental studies revealed a differential onset of expression: in the brain at embryonic stage 17, in the olfactory system at stage E12. In order to determine which cell type in the olfactory epithelium expresses this unique receptor type, a transgenic approach was employed which allowed a coexpression of histological markers together with the receptor and thus visualization of the appropriate cell population. It was found that the receptor-expressing cells were located very close to the basal membrane of the epithelium; however, the cells extended a dendritic process to the epithelial surface and their axons projected into the main olfactory bulb where they converged onto two or three glomeruli in the dorsal and posterior region of the bulb. Thus, these data provide evidence that this unique type of receptor is expressed in mature olfactory neurons and suggests that it may be involved in the detection of special odour molecules

    Is fall prevention by vitamin D mediated by a change in postural or dynamic balance?

    Get PDF
    Introduction: The objectives were:(1) to validate a quantitative balance assessment method for fall risk prediction; (2) to investigate whether the effect of vitamin D and calcium on the risk of falling is mediated through postural or dynamic balance, as assessed by this method. Materials and methods: A secondary analysis of a double blind randomized controlled trial was employed, which included 64 institutionalized elderly women with complete balance assessment (age range: 65-97; mean 25-hydroxyvitamin D levels: 16.4ng/ml (SD ±9.9). Participants received 1,200mg calcium plus 800IU cholecalciferol (n=33) or 1,200mg calcium (n=31) per day over a 3-month treatment period. Using an electronic device attached to the lower back of the participant, balance was assessed as the degree of trunk angular displacement and angular velocity during a postural task (standing on two legs, eyes open, for 20 s) and a dynamic task (get up from a standard height chair with arm rests, sit down and then stand up again and remain standing). Results: It was found that both postural and dynamic balance independently and significantly predicted the rate of falling within the 3-month follow-up. Vitamin D plus calcium reduced the rate of falls by 60% [relative risk (RR)=0.40; 95% CI: 0.17, 0.94] if compared with calcium alone. Once postural and dynamic balance were added to the regression analysis, they both attenuated the effect of vitamin D plus calcium on the rate of falls. For postural balance, the RR changed by 22% from 0.40 to 0.62 if angular displacement was added to the model, and by 9% from 0.40 to 0.49 if angular velocity was added. For dynamic balance, it changed by 1% from 0.40 to 0.41 if angular displacement was added, and by 14% from 0.40 to 0.54 if angular velocity was added. Discussion: Thus, balance assessment using trunk angular displacement is a valid method for the prediction of falls in older women. Of the observed 60% reduction in the rate of falls by vitamin D plus calcium supplementation compared with calcium alone, up to 22% of the treatment effect was explained by a change in postural balance and up to 14% by dynamic balanc

    Real-time PCR assays for the detection of Mycoplasma hyopneumoniae in clinical samples

    Get PDF
    Two real-time PCR assays for detection of Mycolasma hyopneumoniae (Mhyop) in clinical lung samples were established and validated in parallel. One is targeting a repetitive DNA element (REP assay) the other a putative ABC transporter gene (ABC assay). The two assays were shown to be 100% specific when testing pig lungs from defined negative farms. When investigating defined positive farms the REP assay tested with a sensitivity of about 50%, the ABC assay with 90%. The two assays together, however detected 100% of positive farms. Within a single positive farm on average 90% of the samples tested positive with the REP or ABC assay. Analysing a set of 41 lungs from infected pigs from routine diagnostic the REP assay detected 50% and the ABC assay 70%, while both assays together had a sensitivity of 85%

    Markov chain aggregation and its application to rule-based modelling

    Full text link
    Rule-based modelling allows to represent molecular interactions in a compact and natural way. The underlying molecular dynamics, by the laws of stochastic chemical kinetics, behaves as a continuous-time Markov chain. However, this Markov chain enumerates all possible reaction mixtures, rendering the analysis of the chain computationally demanding and often prohibitive in practice. We here describe how it is possible to efficiently find a smaller, aggregate chain, which preserves certain properties of the original one. Formal methods and lumpability notions are used to define algorithms for automated and efficient construction of such smaller chains (without ever constructing the original ones). We here illustrate the method on an example and we discuss the applicability of the method in the context of modelling large signalling pathways

    Peroxisomal membrane channel Pxmp2 in the mammary fat pad is essential for stromal lipid homeostasis and for development of mammary gland epithelium in mice

    Get PDF
    AbstractTo understand the functional role of the peroxisomal membrane channel Pxmp2, mice with a targeted disruption of the Pxmp2 gene were generated. These mice were viable, grew and bred normally. However, Pxmp2−/− female mice were unable to nurse their pups. Lactating mammary gland epithelium displayed secretory lipid droplets and milk proteins, but the size of the ductal system was greatly reduced. Examination of mammary gland development revealed that retarded mammary ductal outgrowth was due to reduced proliferation of epithelial cells during puberty. Transplantation experiments established the Pxmp2−/− mammary stroma as a tissue responsible for suppression of epithelial growth. Morphological and biochemical examination confirmed the presence of peroxisomes in the mammary fat pad adipocytes, and functional Pxmp2 was detected in the stroma of wild-type mammary glands. Deletion of Pxmp2 led to an elevation in the expression of peroxisomal proteins in the mammary fat pad but not in liver or kidney of transgenic mice. Lipidomics of Pxmp2−/−mammary fat pad showed a decrease in the content of myristic acid (C14), a principal substrate for protein myristoylation and a potential peroxisomal β-oxidation product. Analysis of complex lipids revealed a reduced concentration of a variety of diacylglycerols and phospholipids containing mostly polyunsaturated fatty acids that may be caused by activation of lipid peroxidation. However, an antioxidant-containing diet did not stimulate mammary epithelial proliferation in Pxmp2−/− mice.The results point to disturbances of lipid metabolism in the mammary fat pad that in turn may result in abnormal epithelial growth. The work reveals impaired mammary gland development as a new category of peroxisomal disorders

    Exact model reduction of combinatorial reaction networks

    Get PDF
    Receptors and scaffold proteins usually possess a high number of distinct binding domains inducing the formation of large multiprotein signaling complexes. Due to combinatorial reasons the number of distinguishable species grows exponentially with the number of binding domains and can easily reach several millions. Even by including only a limited number of components and binding domains the resulting models are very large and hardly manageable. A novel model reduction technique allows the significant reduction and modularization of these models
    • …
    corecore