
Mathematical Modeling of Biochemical Signal
Transduction Pathways in Mammalian Cells –

A Domain-Oriented Approach to Reduce
Combinatorial Complexity

Von der Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

der Universität Stuttgart zur Erlangung der

Würde eines Doktor–Ingenieurs (Dr.–Ing.) genehmigte Abhandlung

Vorgelegt von

Holger Conzelmann

geboren in Albstadt

Hauptberichter: Prof. Dr.–Ing. Dr. h.c. mult. E. D. Gilles
Mitberichter: Prof. Dr. rer. nat. H. G. Holzhütter

Tag der mündlichen Prüfung: 19. Dezember 2008
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und meines Freundes Roland, die mir immer viel Kraft gegeben haben. Ihnen möchte ich an
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Ich möchte diese Arbeit meinem verstorbenen Bruder Jochen widmen, der uns allen sehr fehlt

und dessen Andenken wir immer bewahren werden.

Boston, 8. Januar 2009



IV

Zum Gedenken an meinen Bruder Jochen

( * 12. April 1981, † 4. März 2008 )



V

Contents

Abstract VIII

Kurzfassung XI

1 Introduction 1

1.1 Signal Transduction Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Combinatorial Complexity and Modeling of Signal Transduction Pathways . . . 2

1.2.1 Heuristic Reduction Approach . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Stochastic Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Complete Mechanistic Representations . . . . . . . . . . . . . . . . . . . 6

1.2.4 Domain-Oriented Approach . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Goals and Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries and Background 9

2.1 Biological Background - Receptor Tyrosine Kinases . . . . . . . . . . . . . . . . 9

2.1.1 The ErbB Receptor Family . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 The Insulin Receptor Family . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Modeling Background - Kinetic ODE Models . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Kinetic Modeling of Reaction Networks . . . . . . . . . . . . . . . . . . . 14

2.2.2 Combinatorial Reaction Networks . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Reaction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Process Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Mathematical Background - Model Analysis and Reduction Techniques . . . . . 20

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1.1 State Space Transformations . . . . . . . . . . . . . . . . . . . 21

2.3.1.2 Analysis Tools from Matrix Theory . . . . . . . . . . . . . . . . 22

2.3.1.3 Concepts from Systems Theory . . . . . . . . . . . . . . . . . . 23



VI CONTENTS

2.3.2 Reduction Methods Based on Time-Scale Separations . . . . . . . . . . . 25

2.3.2.1 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2.2 Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Reduction Methods Based on Observability Measures . . . . . . . . . . . 27

2.3.3.1 Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3.2 Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Thermodynamics of Signal Transduction 30

3.1 Basic Principles of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Chemical Potentials, Equilibrium Constants and the Wegscheider Condition . . 33

3.3 The Chemical Potential of Scaffold Proteins . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Generalized Consideration . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Restrictions on Process Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Unidirectionality in Signal Transduction . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Unidirectionality and Futile Cycles . . . . . . . . . . . . . . . . . . . . . 40

3.5.2 Unidirectionality in Insulin Signaling . . . . . . . . . . . . . . . . . . . . 43

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Exact Model Reduction - A Domain-Oriented Approach 47

4.1 Exact Model Reduction of Combinatorial Reaction Networks . . . . . . . . . . . 48

4.1.1 Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 A Linear Hierarchically Structured Transformation . . . . . . . . . . . . 51

4.1.3 Scaffolds with Single Protein Ligands . . . . . . . . . . . . . . . . . . . . 53

4.1.3.1 General Transformation Pattern . . . . . . . . . . . . . . . . . . 53

4.1.3.2 Example with Three Binding Domains . . . . . . . . . . . . . . 54

4.1.3.3 Example Taken from T-Cell Receptor Signaling. . . . . . . . . . 59

4.1.3.4 Generality of the Method . . . . . . . . . . . . . . . . . . . . . 60

4.1.4 Scaffolds with Multiprotein Ligands . . . . . . . . . . . . . . . . . . . . . 62

4.1.4.1 General Transformation Pattern . . . . . . . . . . . . . . . . . . 63

4.1.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.5 Homodimerization of Receptors and Scaffolds . . . . . . . . . . . . . . . 71

4.1.5.1 Kinetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . 71



CONTENTS VII

4.1.5.2 General Transformation Pattern . . . . . . . . . . . . . . . . . . 73

4.1.5.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Reduced Order Modeling of Combinatorial Reaction Networks . . . . . . . . . . 76

4.2.1 Controllability, Observability and Process Interactions . . . . . . . . . . 76

4.2.2 Reduced Order Modeling Technique . . . . . . . . . . . . . . . . . . . . . 78

4.2.2.1 Multifunctional Protein Binding Domains . . . . . . . . . . . . 82

4.2.2.2 Production and Degradation . . . . . . . . . . . . . . . . . . . . 83

4.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 Example: EGF and Insulin Receptor Crosstalk . . . . . . . . . . . . . . . . . . . 85

4.3.1 Model Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.2 Complete Mechanistic Model vs. Exactly Reduced Model . . . . . . . . . 87

4.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Approximate Model Reduction 92

5.1 Approximate Model Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.1 Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.1.2 Time-Scale Based Approaches and Slow Manifolds . . . . . . . . . . . . . 94

5.1.3 Observability Based Considerations . . . . . . . . . . . . . . . . . . . . . 98

5.2 Approximate Modeling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 Layer-Based Modeling Approach: An Example . . . . . . . . . . . . . . . 102

5.3 Example: EGF and Insulin Receptor Crosstalk . . . . . . . . . . . . . . . . . . . 104

5.3.1 Layer-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.2 Layer-Based Approach vs. POD . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusions and Outlook 109

Bibliography 112



VIII

Abstract

Mathematical models of biological processes are becoming more and more important in bio-

logy. The goal of mathematical modeling is a holistic understanding of how biological processes

like cellular communication, cell division, apoptosis, homeostasis, and adaptation work, how

they are regulated and how they react to perturbations. The complexity of the underlying

cellular reaction networks barely facilitates an intuitive understanding of how genes, proteins,

metabolites and other cellular substances work together. This high complexity of most cellular

processes necessitates the generation of mathematical models in order to access the aforemen-

tioned processes. In this thesis the focus is set on quantitative and dynamic modeling using

ordinary differential equations (ODEs), which allow the transient system behavior to be de-

scribed. Cellular signal transduction pathways and regulatory networks, in particular, exhibit

a very pronounced dynamic behavior and are the main subject of this work.

The possibilities made available through quantitative dynamic modeling of biological networks

are enormous. All kinds of in silico experiments are feasible, which in reality would be time

consuming, expensive or even impossible to accomplish. Such experiments include deletion or

addition of components and interactions and the changing of kinetic properties. Additionally,

systems theory provides a broad spectrum of mathematical analysis tools, which may provide

many suggestions for experimental design or drug target identification. However, a requirement

for high quality contributions from theory is the existence of well-founded mathematical models.

In modeling cellular signal transduction or regulatory reaction networks one has to face certain

problems. Receptors and scaffold proteins, which participate in most of these networks, usually

possess a high number of distinct binding domains inducing the formation of large multiprotein

signaling complexes. Due to combinatorial reasons the number of distinguishable species grows

exponentially with the number of binding domains and can easily reach several millions or even

billions. These huge sets of molecular species form highly interconnected reaction networks

whose dynamics are restricted by thermodynamic constraints following from the principle of

detailed balance.

Most models published in literature account neither for combinatorial variety, nor for thermo-

dynamic restrictions. The majority of available ODE models focus on small subsets of reactions

and complexes. The main difficulty with these heuristically reduced model structures is their

capability of giving an adequate image of the real system’s dynamics especially in the case of

varying environmental conditions. A recently introduced and more systematic approach is the

translation of a rule-based model formulation into a complete ODE model, accounting for all
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feasible reactions and species. Due to their completeness the simulation results of these models

are much more reliable. However, even by including only a fairly limited number of components

and binding domains the resulting models are already very large and hardly manageable. Fur-

thermore, the problem of incorporating the previously mentioned thermodynamic constraints

remains unsolved. For these reasons, new and systematic model reduction or modeling tech-

niques are required that facilitate the generation of highly reduced but accurate models which

additionally do not contradict the fundamental laws of thermodynamics.

Using common modeling strategies the resulting ODE models are only in compliance with ther-

modynamic constraints if the kinetic model parameters fulfill certain mathematical restrictions

given by the Wegscheider condition. Systematic analysis reveals that these constraints have

a descriptive interpretation when considering receptors and scaffold proteins in signaling cas-

cades. They restrict possible interactions between binding and modification processes. Certain

scenarios exist where these interactions may be free of retroactive effects, i.e. unidirectional,

and others, where interactions between domains have to be bidirectional. Unidirectionality is

an important feature of combinatorial reaction networks, forming the basis for model reduction

and modularization methods which will be introduced after the discussion of thermodynamic

constraints.

The first step in the development of new modeling or model reduction techniques is the de-

termination of relevant quantities of signal transduction networks. The goal will be finding

mathematical models which describe the dynamics of these quantities with sufficient accuracy.

Probably, the most popular quantities to describe the current state of receptors or scaffold

proteins are occupancy levels of binding domains. Pawson and Nash stated that domains are

the fundamental elements of signal transduction, rather than individual molecules. According

to this consideration, the conventional mechanistic description of all feasible multiprotein com-

plexes can be replaced by a macroscopic one. Occupancy levels and other characteristics of

individual domains like the phosphorylation states of these sites are chosen as new variables. A

model using these macroscopic quantities also accounts for limitations in current experimental

techniques to measure concentrations of individual multiprotein species. The results of common

biological measurements often correspond to cumulative quantities like levels of occupancy or

degrees of phoshorylation. Thus, the introduction of these and similar quantities into modeling

simplifies the comparison of model variables and experimental readouts. Besides these consid-

erations, this macroscopic description also provides a number of mathematical benefits, such as

facilitating the elimination of unobservable and uncontrollable system dynamics which, in most

cases, leads to significant model reductions. The elimination of unobservable states is often

referred to as exact model reduction. Note, that the term exact may be misleading since the

elimination of model equations is always linked with loss of information. The reduction is only

exact in terms of the input/output behavior which is exactly preserved in the reduced model. In

this thesis, we introduce methods that facilitate the elimination of unobservable and uncontrol-

lable system states and also discuss new modeling approaches that allow the direct generation

of these reduced model structures. Furthermore, a new approximate reduction method, which is

especially suited for large models of combinatorial reaction networks, is developed on the basis
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of existing techniques for general nonlinear systems. In combination these methods facilitate

the reduction of vast combinatorial reaction network models to a manageable size. Finally, the

developed methods are used to generate a model of ErbB and insulin receptor crosstalk.
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Kurzfassung

In der Biologie spielen mathematische Modelle eine immer wichtigere Rolle. Das Ziel der ma-

thematischen Modellierung ist hierbei die Entwicklung eines ganzheitlichen Verständnisses bio-

logischer Prozesse wie Zellkommunikation, Zellteilung, Apoptose, Homeostase oder Adaptation.

Dabei soll untersucht werden, wie diese Prozesse auf molekularer Ebene ablaufen, wie sie re-

guliert werden und wie sie auf Störungen reagieren. Die Entwicklung mathematischer Modelle

ist zur Beantwortung der aufgezeigten Fragestellungen erforderlich, da die Komplexität der

zugrunde liegenden zellulären Reaktionsnetzwerke nur in den seltensten Fällen ein intuitives

Verständnis des Zusammenwirkens von Genen, Proteinen, Metaboliten und anderen zellulären

Komponenten erlaubt.

In dieser Arbeit geht es um die Erstellung quantitativer dynamischer Modelle auf der Ba-

sis gewöhnlicher Differentialgleichungen (DGLn). Vor allem zelluläre Signaltransduktions- und

Regulationsnetzwerke zeigen häufig ein sehr ausgeprägt dynamisches Verhalten, weswegen aus-

schließlich die Modellierung solcher Systeme betrachtet werden soll.

Die durch quantitative dynamische Modellierung eröffneten Möglichkeiten sind enorm. Bei-

spielsweise lassen sich in silico Experimente realisieren, deren Durchführung an lebenden Zellen

zeitintensiv, teuer oder schlicht unmöglich wäre. Hierzu zählen unter anderem die Deletion oder

Addition einzelner Komponenten und Interaktionen sowie die Modifikation kinetischer Eigen-

schaften. Darüber hinaus stellt die Systemtheorie ein breites Spektrum mathematischer Analy-

sewerkzeuge zur Verfügung, die einen großen Beitrag zum Entwurf zielgerichteter Experimente

oder auch zur Identifikation neuer Arzneimittelwirkstoffe liefern können. Eine Voraussetzung

dafür ist jedoch das Vorhandensein fundierter mathematischer Modelle, bei deren Erstellung

sich eine Reihe von Problemen ergibt. An nahezu allen Signaltransduktions- und Regulati-

onsnetzwerken sind Rezeptoren oder sogenannte Adaptorproteine beteiligt. Diese weisen meist

eine hohe Anzahl von Bindestellen auf, wodurch die Bildung sehr großer Multiproteinkomplexe

ermöglicht wird. Die Zahl der unterscheidbaren Molekülspezies wächst dabei exponentiell mit

der Anzahl der Bindedomänen und kann auf mehrere Millionen oder gar Milliarden ansteigen.

Die daraus resultierenden hochvernetzten Reaktionsnetzwerke sind unüberschaubar groß und

komplex. Ihre Dynamik wird zudem durch thermodynamisch begründete Zwangsbedingungen

eingeschränkt, die sich aus dem Prinzip der mikroskopischen Reversibilität ergeben.

Die überwiegende Anzahl der in der Literatur veröffentlichten Modelle berücksichtigt weder

die kombinatorische Komplexität dieser Systeme noch die erwähnten thermodynamischen Be-

schränkungen. Stattdessen werden die Betrachtungen auf eine kleine Teilmenge von Reaktionen
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und Proteinkomplexen begrenzt. Ob die daraus resultierenden, heuristisch reduzierten Modell-

strukturen eine zutreffende Vorhersage der wirklichen Systemdynamik zulassen, insbesondere

unter variierenden Umweltbedingungen, ist schwierig festzustellen. Ein neuer, sehr viel systema-

tischerer Modellbildungsansatz ist die automatische Generierung vollständiger mechanistischer

Modelle auf der Grundlage einer regelbasierten Modellbeschreibung. Aufgrund der Berücksich-

tigung und Abbildung der kompletten realen Netzwerkstruktur sind die aus diesen Modellen

resultierenden Simulationsergebnisse weitaus verlässlicher als diejenigen heuristisch reduzierter

Modelle. Allerdings wachsen die Modelle bei Verwendung dieser Methode in vielen Fällen zu

einer nicht mehr handhabbaren Größe heran. Selbst die Betrachtung einer sehr beschränkten

Menge von Komponenten und Bindestellen führt zu Modellen, die aus mehreren hundert bis

mehreren tausend DGLn aufgebaut sind. Darüber hinaus ermöglicht die Methode keine einfache

oder gar automatische Integration der angesprochenen thermodynamischen Zwangsbeziehun-

gen. Aus den genannten Gründen ist es notwendig, zum einen neue systematische Verfahren zur

Modellreduktion und zur reduzierten Modellierung zu entwickeln und zum anderen Werkzeuge

zur Verfügung zu stellen, die eine einfache Einbeziehung thermodynamischer Beschränkungen

ermöglichen.

Bei der Verwendung üblicher kinetischer Modellierungsansätze wie beispielsweise dem Massen-

wirkungsansatz müssen die Modellparameter die sogenannte Wegscheiderbedingung erfüllen,

damit das erstellte Modell dem thermodynamischen Grundprinzip der mikroskopischen Rever-

sibilität nicht widerspricht. Systematische Analysen dieser Zwangsbedingungen bei großen kom-

binatorischen Reaktionsnetzwerken liefern eine anschauliche Interpretationsmöglichkeit dieser

Restriktionen. Letztere schränken die Interaktionsmöglichkeiten unterschiedlicher molekularer

Binde- oder Modifikationsprozesse ein. So gibt es Netzwerkstrukturen, in denen rückwirkungs-

freie, d.h. unidirektionale, Interaktionen realisierbar sind, wohingegen andere Strukturen nur

wechselseitige Interaktionen zulassen. Rückwirkungsfreiheit ist ein wichtiges Charakteristikum

kombinatorischer Netzwerke, da sie die Grundlage für die ebenfalls im Rahmen dieser Arbeit

vorgestellten Modellreduktions- und Modularisierungsmethoden darstellt.

Der erste Schritt in der Entwicklung neuer Modellierungs- und Modellreduktionsmethoden ist

die Bestimmung charakteristischer Kenngrößen zur Beschreibung von Signaltransduktionssyste-

men. Anschließend folgt die Erstellung eines mathematischen Modells, das die Dynamik dieser

Kenngrößen hinreichend genau wiedergeben kann. Die gebräuchlichsten Größen, die zur Zu-

standsbeschreibung eines Rezeptors oder Adaptorproteins verwendet werden, sind Belegungs-

und Phosphorylierungsgrade einzelner Bindestellen. Laut Pawson und Nash stellen nicht ein-

zelne Proteinkomplexe, sondern Bindedomänen die wesentlichen Grundelemente der Signal-

transduktion dar. In Anlehnung an diese Betrachtung wird in dieser Arbeit die konventionelle,

mechanistische Beschreibung kombinatorischer Reaktionsnetzwerke auf Molekülebene durch ei-

ne makroskopische Sichtweise auf Bindestellenebene ersetzt. Die so modifizierten Modelle, deren

Zustandsvariablen nicht mehr einzelne Molekülkonzentrationen sondern Belegungsgrade sind,

werden auch eher den gegenwärtigen Restriktionen bei experimentellen Messungen gerecht. Die

gängigen Messmethoden liefern Daten über aggregierte Größen wie Belegungs- oder Phosphory-

lierungsgrade und nicht über die Konzentrationen einzelner Proteinkomplexe. Somit ermöglicht
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die Einführung neuer makroskopischer Zustandsvariablen auch eine einfachere Vergleichbarkeit

von Simulation und Messung. Darüber hinaus bringt die Einführung neuer Zustandsvariablen

auch eine Reihe mathematischer Vorteile mit sich. Die in dieser Arbeit vorgeschlagene Wahl

der Systemkoordinanten ermöglicht die Elimination nicht beobachtbarer und nicht steuerba-

rer Systemzustände, woraus ein nicht unerhebliches Potential für Modellreduktionen entsteht.

Die Elimination nicht beobachtbarer Zustände wird in der Literatur häufig auch als exakte

Modellreduktion bezeichnet. Dabei kann das Wort exakt missverstanden werden. Jede Modell-

reduktion ist untrennbar mit einem Informationsverlust verbunden. Exakte Modellreduktionen

eines Systems sind nur bezüglich dessen Ein-/Ausgangsverhaltens exakt. Im Rahmen dieser

Arbeit werden Methoden zur Durchführung exakter Modellreduktionen vorgestellt. Außerdem

werden neue Modellierungsansätze diskutiert, die eine direkte Generierung der sich ergebenden

reduzierten Modellstrukturen erlauben. Zur weiteren approximativen Reduktion dieser Mo-

delle werden ebenfalls neue Verfahren vorgestellt, die auf bereits existierenden Methoden für

allgemeine nichtlineare Systeme basieren und speziell an die Anforderungen kombinatorischer

Reaktionsnetzwerke angepasst sind. Die Kombination all dieser neuen Methoden ermöglicht

schließlich die signifikante Reduktion sehr großer Signaltransduktionsmodelle. Die abschließen-

de Anwendung dieser Modellierungs- und Modellreduktionsmethoden bei der Erstellung eines

Crosstalk-Modells von EGF- und Insulinrezeptor zeigt beispielhaft, welchen großen praktischen

Nutzen die hier entwickelten Verfahren bieten.
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Chapter 1

Introduction

The cell is the structural and functional unit of all living organisms. The variety of existing

cell types adapted to most different environmental conditions is enormous. Despite this great

variety, cells share a lot of fundamental design principles and elementary cellular functions

such as cell division, metabolism or response to stimuli. Our current knowledge about these

processes is fragmentary, and we are far away from a holistic understanding of entire cells. The

recent development of new and improved measurement techniques in molecular biology has

given rise to substantial progress in this field. Knowledge about cellular processes has highly

increased and revealed a nearly unmanageable complexity of molecular detail. The tremendous

number of molecular species and processes occurring within a cell, form strongly interconnected

biochemical reaction networks. One main focus of recent research is on different eucaryotic

signal transduction pathways like insulin, epidermal growth factor (EGF) or tumor necrosis

factor (TNF) signaling. These and other signaling pathways control cellular processes like

proliferation, differentiation and apoptosis. Malfunctions within these networks cause maladies

like cancer, diabetes mellitus or neurodegenerative disorders [92]. An intuitive understanding

of these complex networks and especially of their transient behavior is in most cases unfeasible.

The immense complexity necessitates a systematic approach using mathematical models to

describe and analyze cellular processes.

Mathematical models facilitate all kinds of virtual experiments, which in reality would be time

consuming, expensive or even impossible to accomplish. Such experiments include deletion

or addition of components and interactions, and the changing of kinetic properties. Another

advantage is the possibility to test new hypotheses for consistency with available data and

knowledge about physical laws. Systems theory additionally provides a broad spectrum of

mathematical analysis tools which may provide a number of ideas for experimental design or

drug target identification.

However, mathematical modeling of biological systems is a quite new and unexplored field.

Many of the available modeling and analysis techniques are either not, or only conditionally

applicable to such complex systems. Hence, new approaches are required. One big problem

occurring in nearly all signaling networks is combinatorial complexity. In this thesis it is shown

how this problem can be circumvented using a new approach, which allows for the creation
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of reduced dynamic models of combinatorial systems providing an excellent approximation

accuracy.

1.1 Signal Transduction Pathways

Cells are equipped with highly developed signaling systems which allow them to sense their

environment, receive and process signals and react accordingly. Depending on the environmen-

tal conditions, the cell has to take decisions about cell division, differentiation, apoptosis and

metabolic control [33]. Despite the great diversity of signaling networks and their functions,

most of them share some common principles. Cells most often sense their environment us-

ing transmembrane receptors which transfer extracellular signals across the plasma membrane.

Activation of these receptors usually results in conformational changes of the receptor protein,

initiating a chain of intracellular reactions [2]. In the case of receptor tyrosine kinases (RTKs),

binding of extracelluar signaling proteins or growth factors trigger conformational changes that

allow for receptor dimerization and subsequent autophosphorylation of numerous cytoplasmic

domains [120]. However, receptors can also be activated by small water soluble molecules such

as nutrients [33] or by non-chemical signals such as light in the case of rhodopsin receptors [91].

In the cytoplasm, the signal is transduced to other molecules. In many cases, receptor activation

induces the formation of large multiprotein complexes [105] that often activate a variety of ef-

fector kinases [33]. One of the most prominent examples is the mitogen activated protein kinase

cascade (MAPK) [22]. Most signaling pathways finally result in the activation of transcription

factors, which translocate to the nucleus and directly influence gene expression [77].

1.2 Combinatorial Complexity and Modeling of Signal

Transduction Pathways

The complexity of cellular reaction networks, in most cases, does not facilitate an intuitive

understanding of how genes, proteins, metabolites and other cellular components work to-

gether. In the field of systems biology, mathematical models are used to access the complexity

of these networks systematically. The spectrum of conventional approaches to model signal

transduction networks reaches from qualitative models solely relying on the network struc-

ture to quantitative ones, with the additional integration of kinetic information. The usage of

structural approaches like logical modeling, as proposed by Klamt et al. [74]), is especially rec-

ommended for highly interconnected large-scale signaling networks where primarily qualitative

information is available. Quantitative methods, regardless of whether they are deterministic

or stochastic, do have a higher predictive capability. They are also suited to describe and to

analyze transient system behavior, as well as nonlinear phenomena such as molecular switches,

quantitative signal adaptation or limit cycles, which play crucial roles in biochemical networks.

Signal transduction and regulatory networks are highly involved in decision making processes
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associated with proliferation, cell division or apoptosis, as well as in the control of other pivotal

mechanisms like the circadian rhythm or the cell cycle. Most of these processes have been

shown to provide nonlinear system dynamics indicating that a broad understanding requires

quantitative modeling [36, 127, 128, 72]. Hence, the focus of this work is on kinetic modeling

of signal transduction networks using ordinary differential equations (ODEs), which arguably

is the most common modeling methodology. However, one has to stress the greater degree of

complexity in kinetic modeling when compared with qualitative methods. A major problem

in modeling signal transduction and regulatory networks is the enormous combinatorial com-

plexity of these networks. In signal transduction, receptors and scaffold proteins often possess

a high number of distinct binding domains inducing the formation of large multiprotein sig-

naling complexes. Due to combinatorial reasons the number of distinguishable species grows

exponentially with the number of binding domains and can easily reach several millions or even

billions [56]. Hlavacek et al. mention that a complete mechanistic model of EGFR signaling,

including a very limited number of signaling proteins and binding domains, would consist of

1, 232 ODEs. The problem of combinatorial complexity has also been recognized earlier by

other modelers. Endy and Brent mentioned that the molecules Ste5p, Ste11p, Ste7p, and

Fus3p can form 25, 666 distinct multiprotein complexes [37]. Arkin pointed out that the tumor

suppressor protein p53 may exist in 227 = 134, 217, 728 phospho-forms due to its 27 phosphory-

lation sites [6]. Many other receptors and scaffold proteins provide a similarly large number of

phosphorylation residues. The ErbB receptor family, which will be discussed below, consists of

four receptor species providing between 19 and 27 phosphorylation sites. Since these receptors

can additionally form homo- and heterodimers, the number of feasible receptor species alone

grows to over 1016. This enormous complexity cannot be managed using conventional ODE

modeling approaches which are based on mass balances for all feasible species. In the following

sections, the way this problem has been tackled previously will be reviewed.

1.2.1 Heuristic Reduction Approach

Many existing models evade the problem of combinatorial variety by substituting the complete

mechanistic network structure with a reduced and heuristic one focusing on a restricted number

of molecular species and reactions [7, 52, 53, 54, 73, 93, 122, 124]. Common assumptions range

from competitive mechanisms for effector binding to consecutive binding of effector proteins in

a defined sequence. To illustrate the problems associated with such a heuristic approach, we

will show that even in a simple example, seemingly reasonable simplifications may lead to wrong

model predictions. The example that will be discussed is a receptor, denoted as R, with three

binding domains. One of them is an extracellular domain 1 while the other two are intracellular

domains 2 and 3. We assume that extracellular ligand binding induces conformational changes,

which highly increase the affinity of the intracellular domains towards their binding partners.

The assumed kinetic parameters are depicted in Table 1.1.

A complete mechanistic model comprises eleven different molecular species (extracellular

ligand L, intracellular effectors E and F , receptor species R(0, 0, 0), R(L, 0, 0), R(0, E, 0),
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Affinity of domain kon

[
M−1min−1

]
koff

[
min−1

]
Equilibrium Kd

[
M−1

]
1 (always) k1 = 3 · 105 k−1 = 6 5 · 104

2 (domain 1 unoccupied) k2 = 1 k−2 = 18 5.6 · 10−2

2 (domain 1 occupied) k3 = 5 · 107 k−3 = 24 2.1 · 106

3 (domain 1 unoccupied) k4 = 1 k−4 = 12 8.3 · 10−2

3 (domain 1 occupied) k5 = 1 · 105 k−5 = 60 1.7 · 103

Table 1.1: Kinetic parameters of the reaction network.

R(0, 0, F ), R(L,E, 0), R(L, 0, F ), R(0, E, F ) and R(L,E, F )) and twelve binding reactions

(four reactions describing L binding to R(0, 0, 0), R(0, E, 0), R(0, 0, F ) and R(0, E, F ), four

describing E binding to R(0, 0, 0), R(L, 0, 0), R(0, 0, F ) and R(L, 0, F ), and four describing

F binding to R(0, 0, 0), R(L, 0, 0), R(0, E, 0) and R(L,E, 0)). For a reduced model some

heuristic but reasonable assumptions are made. Since the affinities of the intracellular domains

are extremely low for an unoccupied extracellular domain, it seems reasonable to neglect the

related reactions. After an extracellular ligand has bound, the resulting affinity as well as the

resulting association constant of domain 2 is several hundred-fold higher than the affinity or

the association constant of the third domain. Hence, we additionally assume that the effector

E, in the majority of cases, will bind before F and that the reduced model only has to include

the following three reactions

R(0, 0, 0) + L � R(L, 0, 0)

R(L, 0, 0) + E � R(L,E, 0)

R(L,E, 0) + F � R(L,E, F ),

(1.1)

and the seven state variables [L], [E], [F ], [R(0, 0, 0)], [R(L, 0, 0)], [R(L,E, 0)] and [R(L,E, F )].

Note, that the notation [X] describes the molar concentration of a molecular species X. The

model is parameterized with the related kinetic constants shown in Table 1.1.

This represents the assumption of consecutive ligand and effector binding. In the EGF sig-

naling model, presented by Schoeberl et al. [122], the two effectors GAP and Shc also bind

consecutively to the receptor after stimulation, although the EGF receptor provides two dis-

tinct binding domains for these proteins, similar to the example discussed above. In order to

compare the predictions of the reduced model with a complete one accounting for all feasible

molecular species and reactions, one considers the aggregated concentration of receptors with

occupied domains 1, 2 and 3. These cumulated quantities correspond to the levels of occupancy

of each domain. A comparison of the simulation results shows that the predictions of the re-

duced model are incorrect, revealing just how problematic such heuristic reduction approaches

are (compare Figure 1.1). The discussed example is also consistent with the findings of Faeder

et al. [38]. In their work they showed through simulation studies, that in combinatorial re-

action networks only a relatively small part of the network might be active meaning that the

concentration of many species is negligible. By eliminating these species as well as the associ-
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Figure 1.1: Simulation results of the reduced and complete models. The three graphs show the three
levels of occupancy of the considered receptor. The left graph shows the level of occupancy of domain
1, the graph in the middle the one of domain 2 and the graph on the right the one of domain 3. Both
models are simulated using the same kinetic parameters and initial conditions. The concentrations
are plotted in Molar.

ated reactions a fairly reduced model can be obtained. Although predictions of this reduced

model match those of the complete one for the original parameter values quite well, the reduced

model is not predictive over a larger range of parameter values. Even very small perturbations

in the parameters may result in large approximation errors. Consequently, one can conclude

that reduced network structures might provide good approximations in a limited parameter

domain, however, their derivation necessitates knowledge about the kinetic parameters of the

system as well as extensive simulation studies similar to other reduction methods such as POD

(see below). In the majority of cases, a heuristically derived model structure will be insufficient

when making an approximation of the real system.

1.2.2 Stochastic Approaches

An alternative approach to tackle combinatorial complexity is stochastic simulation. Stochastic

models do have a number of advantages. Such advantages include the concentration that

stochastic models are probably more realistic representations of real systems than ODE models,

since cellular processes have an inherently stochastic nature. Additionally, it can be shown that

stochastic mechanisms can have significant effects on a system’s dynamic behavior [36, 35, 80],

which can only be analyzed using stochastic models. Examples of tools which allow for the

creation of stochastic models of combinatorial networks are StochSim and Moleculizer 1.0.

StochSim was developed in 1998 to circumvent the problem of combinatorial complexity in
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modeling bacterial chemotaxis [94, 125]. Moleculizer 1.0 is a novel modeling tool, which

allows for the automatic generation of cellular reaction networks [88]. Similar to other tools

that are designed for combinatorial reaction networks, Moleculizer allows model specification

using reaction rules which will be discussed in more detail below. The enormous complexity of

the stochastic model is reduced by a new approach which incorporates complexes and reactions

only when they are needed as the simulation proceeds. Moleculizer as well as StochSim

facilitate non-spatial stochastic simulations and are based on the famous work of Gillespie [48,

49].

However, the computational cost for stochastic simulations is in most cases extremely high, since

it increases disproportionately with the number of molecules. Additionally, it is much harder to

analyze the dynamic behavior of a stochastic model or to identify the model parameters from

measurements [15].

1.2.3 Complete Mechanistic Representations

A novel approach that is based on ODE models has been introduced by Blinov et al. [13].

The modeling tool BioNetGen allows a rule-based model specification, which is automat-

ically expanded to a complete mechanistic ODE model that can be simulated and analyzed.

BioNetGen has been used to create a number of signaling models including EGF receptor sig-

naling and FcεRI signaling [40, 14]. Blinov et al. call their approach generate-first modeling [15]

in contrast to on-the-fly modeling such as that proposed by Lok and Brent [88]. The expression

generate-first refers to the fact that BioNetGen initially generates all species, reactions and

equations out of the specified reaction rules before a simulation can be performed. Mole-

culizer on the other hand incorporates complexes and reactions only when they are required

as the simulation proceeds [88]. Note, that the generate-first method can also be applied when

generating stochastic models [15]. However, if one keeps in mind that combinatorial reaction

networks can easily comprise 1016 or even more feasible multiprotein complexes as shown for the

ErbB signaling cascade, it becomes clear that both methods cannot cope with this complexity.

The mechanistic models of EGF and FcεRI signaling generated by BioNetGen include only

a very limited number of components and binding domains.

1.2.4 Domain-Oriented Approach

An alternative approach has been proposed by Borisov et al. [16, 17]. The approach adopts

the point of view that the fundamental elements of signal transduction are domains instead

of molecular species [106]. Accordingly, Borisov et al. has suggested the substitution of the

common mechanistic network description which includes all individual molecular species with

a macrodescription. In this context, the term micro-state is used to describe individual mul-

tiprotein complexes, whereas the term macro-state refers to large sets of micro-states sharing

a certain characteristic, for example, the phosphorylation of a defined binding domain. These

macro-states correspond to descriptive biological quantities, such as phosphorylation degrees or
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levels of occupancy. Macro-states describe the evolution of an isolated binding or phosphoryla-

tion process at a defined domain. A model using these macroscopic quantities also accounts for

limitations in current experimental techniques to measure concentrations of individual multi-

protein species. The results of common biological measurements (such as immunoprecipitation

followed by western blotting) correspond to cumulative quantities, such as levels of occupancy

or degrees of phoshorylation.

Hence, the goal of this approach is the generation of a dynamic ODE model describing the con-

centrations of these macro-states. Borisov et al. show, for two important special cases, that a

reduced number of ODEs is sufficient to describe the dynamics of these macro-states accurately.

One of the discussed examples is a scaffold protein with a large number of independent binding

domains. The other special case discussed by Borisov et al. is a scaffold protein with one con-

trolling domain, for which the kinetic properties of all other domains change if and only if the

controlling domain is occupied or phosphorylated. This approach is very promising although

it still lacks a systematic procedural method applicable to all kinds of signaling networks.

1.3 Goals and Outline of the Thesis

Most models published in literature do not account for the combinatorial variety of signal trans-

duction networks. Software tools like Moleculizer or BioNetGen facilitate the translation

of a rule-based model formulation into more detailed and realistic models. However, even by

limiting the considerations to a relatively small number of components and binding domains

the resulting models tend to be unmanageably large. A novel approach is required to reduce

combinatorial complexity in a systematic manner.

The goal of this thesis is the development of new reduction techniques for ODE models of

combinatorial networks based on the work of Borisov et al. [16, 17]. In terms of model reduc-

tion this includes systematization and extension of the exact reduction approach described by

Borisov et al. [16] and the development of new approximate methods. In this context simple

criteria are required which allow one to determine whether or not an exact reduction of a model

can be produced. For approximate methods on the other hand the approximation error should

be assessable by some simple characteristics. In addition to model reduction, which allows the

reduction of a large model, we also discuss reduced order modeling, providing for the possibility

of immediate derivation of reduced model equations. Most real signaling networks are only ac-

cessible by reduced order modeling, since the generation of a complete mechanistic model and

its subsequent reduction is not practical due to its enormous complexity. Another requirement

is compatibility with the widely-used rule-based modeling approach for combinatorial networks

which will also be included in the forthcoming version of the Systems Biology Markup Language

(SBML Level 3) [57, 45].

The detailed discussion of these issues requires preliminary work and definitions which are given

in the following chapter. We introduce the ErbB and the insulin signaling networks, which will

serve as representative examples for highly complex signal transduction networks throughout
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the thesis. Like most other model reduction techniques that are described in literature, the

methods developed here are either based on time-scale separation or on the elimination of unob-

servable and uncontrollable system dynamics. Hence, we review some fundamental principles of

model reduction in the mathematical background section. This section also serves the purpose

to draw the readers attention to the advantages and drawbacks of already available methods.

Additionally, Chapter 2 gives a detailed discussion of rule-based modeling and clarifies the

notation used in this thesis.

The results of Borisov et al. [16], as discussed above, indicate that the reduced model struc-

tures highly depend on interactions between distinct binding and modification processes. Such

interactions, which are also introduced in Chapter 2, correspond to certain relations between

kinetic parameters. However, the kinetic properties of a combinatorial reaction system are

highly restricted by thermodynamic constraints. In Chapter 3 we analyze the implications of

thermodynamic constraints on the feasibility of process interactions in combinatorial networks

and on model reduction.

Chapters 4 and 5 focus on the development of new domain-oriented reduction techniques. Chap-

ter 4 deals with the systematization and extension of the exact reduction approach introduced

by Borisov et al. [16, 17] in order to provide procedures applicable to all kinds of combinatorial

networks. Approaches for both model reduction and reduced order modeling are provided. In

Chapter 5, we also present a new approximate reduction technique and discuss its advantages

and drawbacks. Important aspects of this work have already been published [29, 30, 31, 32, 78],

and will be reviewed and extended here.

Finally, the developed methods are used to generate a model of ErbB and insulin receptor

crosstalk. The exact reduction of this model is presented in Chapter 4 while the approximately

reduced model version is discussed in Chapter 5. In order to evaluate its approximation quality,

the approximately reduced model will be compared to one reduced with another common

nonlinear model reduction method.
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Chapter 2

Preliminaries and Background

2.1 Biological Background - Receptor Tyrosine Kinases

In this thesis, receptor tyrosine kinases (RTKs) are used to exemplify the developed model

reduction and reduced modeling techniques. In many cases, greatly simplified models of real

RTKs will be used in order to illustrate the main principles of the discussed methods. However,

we will also provide a more detailed model of receptor crosstalk.

RTKs form a family of high affinity cell surface receptors with a large number of ligands

including growth factors, cytokines and hormones. In the human genome one has identified

about ninety genes that represent protein tyrosine kinases of which 58 encode receptor tyrosine

kinase proteins [114, 3]. The RTKs are divided into several classes [2]. Two of the most

prominent and best studied RTK subfamilies are the ErbB receptor and the insulin receptor

families. All of the following examples will be based on these two signaling networks. Hence,

the basic knowledge about these receptor families shall be reviewed below.

2.1.1 The ErbB Receptor Family

The ErbB/HER family of RTKs plays a crucial role in proliferation, differentiation, migration

and survival of mammalian cells [120, 68], where dysfunction of the ErbB signaling network

can cause cell transformation and cancer [146, 64]. The ErbB receptor family contains four

cell surface receptors, namely ErbB1-4, and can bind at least 13 different ligands such as

EGF, TGFα, NRG and Amphiregulin. Note, that the ErbB1 receptor is also known as EGFR

(Epidermal Growth Factor Receptor), while ErbB2-4 are also often referred to as HER2-4. All

ligands of these receptors share an epidermal growth factor (EGF) domain [108, 27]. After

stimulation, the monomeric receptors form receptor dimers resulting in autophosphorylation of

their cytoplasmic domains [83, 66, 120].

A lot of insights into ErbB signaling are based on the molecular structure of these receptors.

The extracellular domain of ErbB receptors consists of four subdomains (I, II, III and IV).



10 Preliminaries and Background

Figure 2.1: Schematic depiction of the ErbB receptor structure with its four subdomains adapted from
Klein et al. [76]. The receptor is shown in both its tethered and its extended form. In the extended
form the dimerization arms are exposed and dimerization can occur.

Subdomains I and III contain leucine-rich sequences that can bind to the ligands, whereas sub-

domains II and IV consist mainly of cysteine-rich sequences that comprise two dimerization

arms [81, 18]. Intramolecular forces between domains II and IV stabilize the protein in an au-

toinhibited or tethered conformation and prevent access to the dimerization arms [26, 44, 76].

The intramolecular tether is, however, not very strong and receptors can undergo a conforma-

tional change to uncouple domains II from IV, which is preferably what will happen if a ligand

binds to the receptor [104]. A schematic structure of the extracellular receptor domain is shown

in Figure 2.1. The extended state exposes both dimerization arms and brings domains I and III

closer together which increases ligand binding affinity. In their untethered form domains I and

II are free to pivot about a hinge-like region connecting them to domains III and IV. Receptors

in this extended conformation can form homo- or heterodimers that are stabilized by the ex-

posed dimerization arms [18, 100, 46]. Another interesting feature of the ErbB receptor family

is that ErbB2 and ErbB3 cannot autonomously relay extracellular signals to the cytoplasm.

For ErbB2 no ligand has been identified which might be explained by the fact that ErbB2 is

permanently in its untethered state due to a strong interaction between its domains I and III.

This prevents ligand access to these binding domains [27, 51]. However, ErbB2 serves as the

preferred partner for heterodimerization with other ErbB receptors. ErbB3 on the other hand

possesses a defective kinase domain [75], but also signals through ErbB heterodimers.

Dimerization induces receptor kinase activity resulting in autophosphorylation of various cy-

toplasmic residues. After phosphorylation of the cytoplasmic domains the ErbB receptors can

recruit numerous effector proteins such as Gab1, Shc, Grb2 and PLCγ which have very differ-

ent downstream targets. These effector proteins can also be phosphorylated by the receptor
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ErbB1 ErbB2 ErbB3 ErbB4

Total number of cytosolic tyrosines 20 19 23 27

No binding partner 8 11 14 16

One binding partner 6 7 8 7

More than one interaction partner 6 1 1 4

Number of different binding partners 8 4 4 7

Binding domains for Grb2 6 1 2 6

Binding domains for Shc 6 5 1 4

Binding domains for PI3K 0 0 6 1

Binding domains for Cbl 1 0 0 0

Binding domains for STAT5 2 0 0 1

Binding domains for PTP-2c 3 1 0 1

Binding domains for Crk 1 0 0 1

Binding domains for Nck 0 0 0 1

Binding domains for Src 1 0 1 0

Binding domains for SH3BGRL 1 1 0 0

Table 2.1: Overview of phosphorylated tyrosine residues of the ErbB receptor family. The data is
taken from Alory et al. and Schulze et al. [4, 123].

kinase after binding [41, 58, 107, 20]. Altogether, 89 potential tyrosine phosphorylation sites

on the four ErbB receptors are known [123, 136]. For 28 of them, one single binding partner

has been identified. For 12 phosphorylation sites, more than one binding partner has been

found, and 49 tyrosine residues do not seem to have any binding partner. Most of the residues

that lack a binding partner are located near the kinase domain, while the others were found

at the C-terminal regions of the receptor. Table 2.1 gives an overview of the phosphorylated

tyrosine residues for the ErbB receptors and their potential binding partners. These adaptor

proteins themselves can recruit further signaling proteins and/or activate downstream signaling

cascades such as the MAP kinase cascade [22]. The effector protein Shc, for example, is known

to possess both a phosphotyrosine binding domain (PTB) and a Src homology 2 domain (SH2).

With its PTB domain Shc primarily interacts with the ErbB and other RTK receptors, whereas

the phosphorylated SH2 domain predominantly interacts with Grb2 [115]. Grb2 possess two

additional domains which recruit the adaptor protein SOS. SOS is a guanine exchange factor

(GEF) which can activate the membrane bound small G-protein Ras, by effecting the exchange

of GDP to GTP [86, 24]. Active RasGTP in turn initiates the MAP kinase cascade. Phospho-

rylated ERK which is a component of the MAP kinase cascade stimulates a serine/threonine

phosphorylation of SOS, resulting in dissociation of the Grb2-SOS complex [137, 24].

A further very important process in signal transduction is receptor internalization. Thereby

the ErbB receptors cluster over clathrin-coated regions of the cell surface and are subsequently

invaginated by the plasma membrane forming endocytic vesicles [147]. The main purpose of
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ligand induced internalization and endocytosis is assumed to be the downregulation of growth

factor signaling. However, there is growing evidence suggesting that internalized receptors

activate signaling pathways other than just receptors at the plasma membrane [147, 95, 97].

Most data about internalization of ErbB receptors is available for EGFR/ErbB1. In literature

there is a controversial discussion about how internalization is induced [25, 43, 142, 121]. More

recent experimental data suggests that ErbB1 kinase activity and autophosphorylation only

play a minor role in receptor internalization, while dimerization seems to be essential [135].

Additionally, the effector molecule Grb2 is also reported to play a crucial role in the initial

steps of receptor internalization [67].

Internalized and phosphorylated ErbB1 receptors might bind the E3 ubiquitin ligase Cbl which

induces ubiquitination. Receptors that are marked by ubiquitin are targeted to the lysosome for

degradation [27]. Receptors that are not ubiquitinated, as well as those that are deubiquitinated

by so-called DUBs (deubiquitinating enzymes), are more likely recycled to the cell surface [27].

The other three ErbB receptors are endocytosis impaired and are mostly recycled to the plasma

membrane [147, 109, 8]. ErbB1 receptors are reported to be predominantly targeted to the

lysosome, while ErbB3 is recycled more often. Heterodimerization with the ErbB2 receptor

decreases the degradation rate and increases recycling of its partners [147, 143, 84].

2.1.2 The Insulin Receptor Family

The insulin receptor signaling system is of high medical interest and therefore well studied

[71, 116, 117, 129]. Insulin regulates cellular glucose uptake [23, 71] and has a major impact

on metabolism [110, 117]. It promotes synthesis and storage of glycogen, proteins and lipids

and negatively regulates their degradation. Furthermore, it negatively regulates secretion of

sugars, amino acids and fatty acids [116]. It is involved in gene expression [96], cell survival

and differentiation. Defects in the insulin signaling system give rise to wide spread maladies

like insulin resistance and obesity [85, 21, 89].

The insulin receptor family consists of three distinct receptors: the insulin receptor (IR), the

insulin-like growth factor receptor (IGFR) and the IR related receptor (IRR) [136]. The insulin

receptor (IR) plays a crucial role in regulation of protein, carbohydrate and lipid metabolism

of higher organisms. The closely related insulin-like growth factor receptor (IGFR) is involved

in normal growth and development [1, 136]. Only very limited information is available about

the IR related receptor IRR. Until now no ligand has been identified for this receptor. It is

known, however, that IRR can mediate male sexual differentiation in mice, which indicates

that a yet unknown IRR ligand may exist [98]. Another discussed possibility is that IRR

has a similar function such as ErbB2 [69, 126]. All three members of the insulin receptor

family are constitutively dimerized. Each monomeric receptor consists of two disulfide-linked

protein subunits (α, β). The α subunit is completely extracellular. The β subunit comprises an

extracellular, a transmembrane and an intracellular part. In contrast to most other receptor

tyronsine kinases the constitutively dimerized insulin receptors are activated exclusively by
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ligand binding without further oligomerization [103]. Consequently, ligand binding alone has

to induce conformational changes which increase the kinase activity of the receptors and lead

to autophosphorylation of the intracellular binding domains [103].

The available data about binding domains and binding partners of insulin receptors is not

as detailed as that for the ErbB signaling system. However, it is known that, similar to the

ErbB system, phosphorylation of the receptors directly or indirectly activates a number of

common downstream signaling proteins, such as Grb2, Shc, PLCγ and PI3K. Additionally,

most signaling events are mediated through the family of insulin receptor substrates (IRS).

IRS is a family of scaffold proteins providing 20-22 potential binding domains which recruit

various other downstream proteins [103].

The insulin receptor IR has binding sites for IRS and Shc. Both sites become phosphorylated

before effector binding [116]. Similar to the processes in the ErbB signaling network, Shc then

becomes phosphorylated and binds to Grb2. Grb2 can bind with SOS, which in turn can be

phosphorylated. IRS has four binding sites for PI3K (in fact, it has at least nine binding sites

for PI3K, with each PI3K occupying two binding sites), one for Grb2 and one for SHP2 [140].

Although we only discuss two RTK receptor families and restrict our further considerations to

a very limited number of adaptor proteins, these systems highlight the enormous complexity of

eukaryotic signal transduction networks. Complete mechanistic descriptions of these complex

networks are unfeasible. Model reduction techniques are required in order to generate practi-

cally manageable ODE models. In the following section, we give an introduction and overview

to common modeling and model reduction techniques.

2.2 Modeling Background - Kinetic ODE Models

Modeling is an ambiguous term which comprises a wide spectrum of model types and modeling

methods. Firstly, one has to specify what kind of models will be generated. In the following

sections and chapters, we will always consider ordinary differential equation (ODE) models

given in state space representation

~̇x(t) = ~f (~x(t), ~u(t), ~p) ~x(t0) = ~x0

~y(t) = ~h (~x(t)) ,
(2.1)

where ~x(t) denotes the n-dimensional vector of all dynamic states or variables, ~u(t) represents

the m-dimensional vector of all external input signals and ~p is the q-dimensional vector of all

model parameters. The vector ~y(t) comprises all ρ output variables of the system, which either

correspond to measured quantities or more generally to all quantities of interest. The vector

field ~f and the vector valued function ~h do have appropriate dimensions.
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2.2.1 Kinetic Modeling of Reaction Networks

An ODE model of a biological reaction network is usually deduced on the basis of mass or mole

balances. The first modeling step is the translation of all feasible reactions A + B � C into

reaction rates. In this thesis, we will always assume that reaction rates are formulated using

mass action kinetics such as r = kon[A] [B]− koff[C], where kon and koff denote the association

and dissociation constants, while [A], [B] and [C] refer to the mole concentrations or molarities

of the corresponding species. The second step is the derivation of the mass or mole balances.

The mole balances for all feasible species have the form

dni
dt

=
(∑

rproduction −
∑

rconsumption

)
· V. (2.2)

V is the volume of the cellular compartment in which the reactions occur. These mole balances

can be translated into ODEs for the concentrations [Xi] using the relation ni = [Xi]V . For

constant volume V , which we will assume in this thesis, the ODEs have the form

d[Xi]

dt
=
∑

rproduction −
∑

rconsumption. (2.3)

In vector notation this can also be written using the stoichiometric matrix N

~̇x = N~r(~x, ~u, ~p) = ~f(~x, ~u, ~p), (2.4)

which will be explained below. In this equation, ~x is the vector of all concentrations [Xi], and

~r is the vector of all reaction rates which are functions of the state variables and the inputs.

The kinetic reaction constants kon and koff correspond to the model parameters ~p.

As a simple example, we consider a receptor R which provides two binding domains for the

two ligands L and E. In this case the reaction system consists of four reversible reactions

(two describing L binding to R(0, 0) and R(0, E), and two describing E binding to R(0, 0) and

R(L, 0)), for which the following reaction rates can be constructed

r1 = k1[R(0, 0)] · [L]− k−1[R(L, 0)]

r2 = k2[R(0, E)] · [L]− k−2[R(L,E)]

r3 = k3[R(0, 0)] · [E]− k−3[R(0, E)]

r4 = k4[R(L, 0)] · [E]− k−4[R(L,E)].

(2.5)

We assume that the concentration [L] can be considered as input function. For the remaining

five concentrations, one can construct the ODEs

d

dt


[R(0, 0)]

[R(L, 0)]

[R(0, E)]

[R(L,E)]

[E]

 =


−1 0 −1 0

1 0 0 −1

0 −1 1 0

0 1 0 1

0 0 −1 −1


︸ ︷︷ ︸

N


r1

r2

r3

r4

 , (2.6)
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which, however, are linearly dependent due to conservation relations. In this simple example it

can be easily seen that

d

dt
([R(0, 0)] + [R(L, 0)] + [R(0, E)] + [R(L,E)]) = 0

d

dt
([E] + [R(0, E)] + [R(L,E)]) = 0.

(2.7)

These two equations correspond to conservation relations for R and E. Since the model

does not comprise production or degradation of any species, it is obvious that the overall

concentrations [Rtot] and [Etot] remain constant. In this thesis, such a conserved quantity is

referred to as a thermodynamic component or a conserved moiety.

2.2.2 Combinatorial Reaction Networks

Cellular signal transduction networks as well as regulatory networks are characterized by an

enormous complexity. This complexity results from combinatorial effects which are due to the

relatively high number of binding domains of receptors or scaffold proteins. Within the last

few years a number of new approaches have been explored in order to model, analyze and

structure these networks and to cope with their complexity. New representation formalisms

peculiar to combinatorial reaction networks emerged within the last few years. The notation

for combinatorial reaction networks used in this thesis follows these new formalisms, which are

reviewed below.

Multiprotein Complexes in Signaling. The formation of multiprotein complexes is a

characteristic feature of numerous signaling cascades. The reason for this complex formation

is that many receptors and scaffold proteins participating in signaling networks provide a high

number of binding domains. Even most effector proteins possess more than one binding domain.

This can result in large and branched multiprotein complexes. From a mathematical point of

view these complexes can be depicted as undirected graphs [12]. In a simplified representation,

which will be sufficient for our purpose, each protein corresponds to a node and each active

binding represents an edge. These graphs can be divided into two main categories, namely

trees and other more general graphs. A tree is defined as a graph in which any two nodes are

connected by exactly one path. Trees can also be characterized as connected graphs without

cycles. The mentioned classification is also reasonable from a biological point of view since cycles

in a graph structure indicate that the corresponding multiprotein complex can theoretically get

infinitely large. This can be further exemplified when considering two proteins A and B, both

of which have two binding domains. Let us assume that the two domains of A can bind B

and both domains of B can bind A. This constellation theoretically facilitates an infinitely

long chain of alternating A and B proteins or closed protein chains of arbitrary size. Receptor

clustering phenomena such as that observed in TNF signaling may result from such or similar
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mechanisms [148]. The multiprotein complexes occurring in ErbB and insulin signaling can

both be represented by trees. In this thesis, we will only consider such systems. Systems

including clustering phenomena, like the TNF receptor system, have to be treated differently.

One possible approach to handle such systems could be the concept of population balances as

used in modeling crystallization processes in chemical engineering.

Trees can either be represented graphically or textually. A graphical representation of the

resulting trees is used in BioNetGen [13]. In this thesis, multiprotein complexes will be

represented by a simplified textual representation similar to that introduced by Faeder et al. [39].

Since undirected trees do not possess a uniquely determined root node, their schematic textual

representation is not unique either. However, it appears reasonable to choose the receptor or

scaffold providing the largest number of domains as the root node.

Receptors with Single Protein Ligands. Let us consider a receptor R with a number of

binding domains, where each domain j can bind an effector Ej. If this effector Ej cannot recruit

further signaling proteins it will be called a single protein ligand. One possible molecular species

could be R(E1, 0, E3, ..., En). The introduced identifiers describe the status of the binding

domain. The identifier 0 depicts an unoccupied domain while Ej indicates that the j-th domain

is occupied. Alternatively, the molecular species R(E1, 0, E3, ..., En) can also be represented

by R(1, 0, 1, ..., 1) if each domain can only be occupied by one specific effector. In this case

the identifier 1 represents an occupied domain. This representation also allows the definition

of macro-states as introduced by Borisov et al. [16]. The definition of macro-states requires

an additional identifier, like an asterisk, which has the meaning of a replacement character.

R(1, ∗, ..., ∗) describes the set of all micro-states that have bound E1 no matter if other domains

are occupied or not. Macro-states such as those can be interpreted as levels of occupancy of

the considered domains. The usage of the asterisk label allows the additional characterization

of other sets of micro-states such as R(1, ∗, ∗, 1, ∗, ..., ∗) which is a subset of the earlier definied

occupancy level. These states can be considered as some generalized macro-states or mesoscopic

states. Concentrations of macro-states depicted as [R(1, ∗, ..., ∗)] correspond to the sum of all

related micro-state concentrations.

Receptors with Multiprotein Ligands. Many multiprotein complexes include chains of

associated proteins. Let us assume that the receptor R can bind the effector E1, which in turn

can bind E2 and so on, until the effector En−1 finally binds En. Generally, an adequate rep-

resentation of such a complex would be R(E1(E2(....))) which is difficult to handle due to the

high number of nested parentheses. Hence, we will restrict our considerations on multiprotein

complexes in which the sequence of proteins within the chain is unique. This assumption facil-

itates an alternative simplified representation R(Ei) which indicates that the chain of proteins

includes all effectors from R to Ei. Additionally, a new type of macro-state has to be intro-

duced, namely R(Ei(∗)) which corresponds to the set of all complexes that at least comprise

the protein chain from R to Ei.
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Branched Systems. Branched systems usually consist of a receptor and a number of further

scaffold proteins associating to the receptor in the process of signaling. One example is the

binding of the scaffold IRS to the insulin receptor. A receptor R that can bind the effectors

E1 to En as well as a scaffold S which in turn can bind numerous further effector proteins

shall be represented by R(E1, ..., S(ES1, ..., ESn), ..., En). By using the asterisk label one can

characterize any type of generalized macro-state.

Receptor Dimers. We will study one special case of branched systems in more detail; namely

receptor dimers such as those occurring in ErbB signaling. In contrast to the already introduced

representation for branched systems, an alternative one will be used for dimeric species for

the purpose of clarity. Let us assume that the receptor R can bind several effector proteins

and additionally forms homodimers. The resulting multiprotein species shall be represented

by R(E1, ..., En).R(E1, ..., En). Note that we will not distinguish between symmetric dimers.

Hence, the two species R(E1, 0, E3).R(0, 0, E3) and R(0, 0, E3).R(E1, 0, E3) will be considered

as equivalent. In terms of macro-states, we will distinguish between R(E1, ∗, ..., ∗).R(∗, ..., ∗)
and R(E1, ∗, ..., ∗).∗. The first expression describes all dimers of which at least one receptor

has bound E1, whereas the latter expression characterizes all receptors that have bound E1

no matter if they are part of a monomeric species or a dimeric one. All these agreements also

apply for heterodimers.

The post-translational modification of binding domains through phosphorylation or ubiqui-

tination will be depicted by the labels P and Ub. In order to distinguish between receptor

phosphorylation and phosphorylation of an effector protein we write R(P ) and R(E1(P )) re-

spectively.

2.2.3 Reaction Rules

As discussed above, combinatorial reaction networks may consist of billions of species and

reactions. An interesting question is that of how the essence of these networks can be captured

without specifying all species and reactions manually. Within the last few years, several research

groups have suggested the use of reaction rules as a form of generalized reaction, to characterize

combinatorial networks. Rules serve as patterns which allow for the automatic generation of

all reactions and species [57, 39, 12]. A rule comprises patterns for reactants and products, a

mapping from reactants to products and a rate law. Patterns for reactants or products can be

depicted by macro-states. The most commonly used approach to quantify rate laws in signaling

networks is probably the mass action kinetic. Unless otherwise noted we assume mass action

kinetics for all reactions considered in this thesis. A rule like

R(0, ∗, ..., ∗) + L � R(L, ∗, ..., ∗) (2.8)

is used to identify, through pattern matching, the species that have specific features required to

undergo the specified transformation. By convention, the rate laws for all implied elementary
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reactions are parameterized by the same kinetic parameters, indicating that the described

binding or modification is independent of all features not explicitly included [57]. Hence,

reaction rules imply interactions between distinct domains or binding processes. Let us assume

that binding of L increases the phosphorylation degree at another domain. This interaction

can be depicted by formulating two reaction rules for the considered phosphorylation

R(0, 0, ∗, ..., ∗) � R(0, P, ∗, ..., ∗)
R(L, 0, ∗, ..., ∗) � R(L, P, ∗, ..., ∗)

(2.9)

where each rule is parameterized with different kinetic parameters. In general, the exact num-

ber of reactions generated by rules like these depends on the entire set of rules in which the

considered rule is embedded.

Reaction rules have proven to be a representation offering all required degrees of freedom in

order to specify models of combinatorial networks. Hence, the concept of reaction rules is a new

feature that will be included in SBML Level 3 (Systems Biology Markup Language). SBML is

the standard exchange format for computational models of biochemical networks [45, 63]. How-

ever, one drawback of a rule-based representation is that interactions between distinct binding

and modification processes, which will play a major role in the following subsection, are hard to

extract for complex systems. An ideal modeling tool should probably provide a visualization of

the process interactions realized by the specified reaction rules. A more detailed introduction

to the concept of process interactions is given below.

2.2.4 Process Interactions

A common problem in modeling large reaction networks is the enormous number of unknown

kinetic parameters. This especially holds true for combinatorial networks, which describe mul-

tiprotein complex formation. In accordance with thermodynamics, we assume in this thesis

that all reactions are reversible. In conjunction with the law of mass action this yields two

kinetic parameters per reaction. Considering different models [73, 122, 40, 12] and modeling

techniques [13, 16, 32, 78] for signal transduction networks, it becomes apparent that the large

number of occurring reactions must be parameterized by a relatively small number of different

kinetic parameters. However, the assumptions which determine those reactions that are pa-

rameterized by the same parameter values and those determined by different parameter values

vary. The most accurate suggestion is probably to determine this qualitative parameterization

on the basis of process interactions.

In this context, we adapt the point of view that domains instead of molecular species are the

fundamental elements in signal transduction [106]. Binding domains can be either occupied

by other proteins or can undergo post-translational modifications such as phosphorylation. We

define a binding process as the sum of all reactions that change the occupancy level of the consid-

ered domain. Analogously, we define a modification process as the sum of all reactions changing

the degree of modification of a domain. Two arbitrary processes, no matter whether they are
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Figure 2.2: A reaction cycle such as that depicted on the left can describe non-interacting processes,
unidirectionally or mutually interacting processes. A reaction chain as shown on the right realizes a
special mutual interaction, called an all-or-none interaction [78].

binding or modification processes, may be either completely independent, interact unidirec-

tionally or interact mutually. Koschorreck et al. [78] additionally discuss so-called all-or-none

interactions which represent an important border case of mutually interacting processes. These

different types of interactions will be further explained by considering a very simple example.

In this simple example, one considers a receptor R which provides two binding domains for the

two ligands L and E. Hence, the system comprises two binding processes, namely L binding

and E binding. In this case the reaction system consists of four reversible reactions depicted in

Equation 2.5 (two describing L binding to R(0, 0) and R(0, E), and two describing E binding

to R(0, 0) and R(L, 0)). The following process interaction types can be distinguished

• non-interacting processes

Complete independence implies that the kinetic association and dissociation constants of

one domain do not change upon ligand binding on the other domain. Hence, it follows

for the parameters k2 = k1, k−2 = k−1, k4 = k3 and k−4 = k−3.

• unidirectionally interacting processes

The binding of one ligand, for example ligand L, is not influenced by the binding of the

other one. However, L binding does change the kinetic properties of the other domain.

In this case, only the conditions k2 = k1 and k−2 = k−1 have to be fulfilled.

• mutually interacting processes

This is the most general case. Binding of a ligand has an influence on the binding of the

other ligand and vice versa. In this case, all parameters can have different values.

Koschorreck et al. [78] introduce another type of interaction in addition to the aforementioned

interactions:
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• all-or-none interactions

All-or-none interactions are a special case of mutual interactions. A mutual interaction

between two processes is called an all-or-none interaction, if the reaction cycle given by

the four reactions of our example degenerates to a reaction chain (compare Figure 2.2).

In real biochemical networks, such interactions are usually given by domain phosphory-

lation and subsequent ligand binding. Phosphorylation can generally be considered as

a necessary precondition for ligand binding. On the other side ligand binding prevents

dephosphorylation of the domain for steric reasons. To realize an all-or-none interaction

in our example, one has to choose k2 = k−2 = k3 = k−3 = 0. In this case the species

R(0, E) will not occur and the remaining reactions r1 and r4 form a reaction chain.

Note, that these are theoretic considerations. The question of whether a certain type of inter-

action is feasible from a thermodynamic point of view will be discussed in Chapter 3.

2.3 Mathematical Background - Model Analysis and Re-

duction Techniques

The main focus of this thesis is on the development of new model reduction techniques for

combinatorial reaction networks. In literature, one can already find plenty of different reduction

techniques. Thus, it is essential to give an overview of existing methods, the possibilities offered

by them as well as their limitations. Furthermore, these methods will serve as a basis for the

development of new techniques that are adapted to the special requirements of combinatorial

reaction networks. Note, however that the literature regarding approximation of dynamical

systems is very extensive and as such, the consecutively given overview can only provide a

rough picture. A more detailed discussion of available approximation techniques is given in the

textbook from A. C. Antoulas [5].

Although the number of different reduction techniques is relatively high, all of these meth-

ods can be divided into two categories; namely methods based on time-scale separation and

methods based on observability and controllability measures. Time-scale separation techniques

are applicable if the model comprises processes that evolve at different time-scales. The fast

dynamics of the system can be approximated by setting all slow variables to a constant value.

On the other hand, the slow dynamics of the system can be described by taking the steady

state assumption for all fast variables. Methods based on observability and controllability mea-

sures eliminate states whose influence on the considered input/output behavior is negligible.

In many cases both approaches are combined. In this section, the underlying system-theoretic

concepts and analysis tools will be introduced and defined. Afterwards we will review some of

the available reduction methods.
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2.3.1 Preliminaries

All considerations will be restricted to models consisting of ordinary differential equations given

in state space representation. One basically distinguishes between linear

~̇x(t) = A~x(t) +B~u(t) ~x(0) = ~x0

~y(t) = C~x(t)
(2.10)

and nonlinear systems

~̇x(t) = ~f (~x(t), ~u(t)) ~x(t0) = ~x0

~y(t) = ~h (~x(t)) .
(2.11)

In both cases, ~x(t) denotes the n-dimensional vector of all dynamic states or variables, while

~u(t) represents the m-dimensional vector of all external input signals. The vector ~y(t) comprises

all ρ output variables of the system. The matrices A, B and C as well as the vector field ~f and

the vector valued function ~h do have appropriate dimensions. Systems are termed autonomous

for vanishing input signals (~u(t) ≡ 0).

2.3.1.1 State Space Transformations

The first step in model reduction of a large class of techniques is a state space transformation.

The goal of these transformations is in general, the separation of fast state variables from slow

ones or of observable from unobservable ones. Again one distinguishes between linear and

nonlinear transformations

~z = T~x and ~z = ~φ(~x). (2.12)

In this thesis, it is assumed that each transformation is a diffeomorphism, which in the case

of linear transformations requires that the matrix T is invertible, and in the case of nonlinear

transformations that ~φ(0) = 0, ~φ is invertible and both ~φ and ~φ−1 are differentiable. The

transformed model equations can be deduced from Equation 2.12 by differentiation as shown

below

~z = T~x | d
dt

⇒ ~̇z = T~̇x = T ~f(~x, ~u). (2.13)

Finally, the old variables ~x have to be replaced by the new ones using the inverse transformation

~x = T−1~z resulting in

~̇z(t) = T ~f
(
T−1~z(t), ~u(t)

)
~z(t0) = ~z0 = T~x0

~y(t) = ~h
(
T−1~z(t)

)
.

(2.14)

In the case of nonlinear transformations, the transformed model equations can be deduced

following the same procedure. However, note that the inversion of a nonlinear transformation

can be extremely difficult.
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2.3.1.2 Analysis Tools from Matrix Theory

Two fundamental analysis tools from matrix theory which play a crucial role in the field of

model reduction, especially in the reduction of linear systems, are the Eigenvalue Decomposi-

tion (EVD) and the Singular Value Decomposition (SVD). In the subsequent paragraphs we

consider the mathematical background from matrix theory adapted from the textbook of A. C.

Antoulas [5]. The application of the EVD as well as the SVD in terms of model reduction is

discussed afterwards.

Eigenvalue Decompostion (EVD). Given a square matrix A ∈ Rn×n the eigenvalue prob-

lem consists of finding the complex eigenvalues λi and the corresponding nonzero eigenvectors

~v ∈ Rn satisfying the equation

A~v = λ~v or (A− λI)~v = 0. (2.15)

The defined problem has a solution if and only if A − λI has a nontrivial kernel. For finite

dimensional matrices A, this leads to the nonlinear equation for the eigenvalues

det (A− λI) = 0, (2.16)

which is called characteristic polynomial of A. For each root of the characteristic polynomial

λi, one can calculate the corresponding eigenvectors by determining the kernel of A−λiI. Two

square matrices A and B do have the same eigenvalues λi if there exists a similarity transfor-

mation given be the invertible matrix T , such that B = T−1AT . If ~vA are the eigenvectors of A

and ~vB the eigenvectors of B it holds ~vB = T~vA. If the algebraic multiplicity of each eigenvalue

is equal to its geometric multiplicity, there also exists another invertible matrix T̃ that yields

Λ = diag(λi) = T̃−1AT̃ . The algebraic multiplicity of an eigenvalue λi of the characteristic

polynomial p(λ) = (λ− λi)k s(λ) is given by k. The geometric multiplicity is defined as the

dimension of the nullspace ker(A − λiI). The transformation matrix T̃ that diagonalizes the

matrix A is given by the n eigenvectors T̃ = [~v1, ..., ~vn]. If the matrix A is not diagonalizable it

can be transformed to Jordan canonical form with nontrivial Jordan blocks. However, an EVD

of A requires that A is diagonalizable and is given by the decomposition A = T̃ΛT̃−1. More

details about the EVD as well as the Jordan canonical form can be found in the textbook of

A. C. Antoulas [5].

Singular Value Decomposition (SVD). Given a rectangular matrix A ∈ Rn×m, with

n ≤ m and rank n, a matrix decomposition always exists, such that

A = UΣV T (2.17)

where U ∈ Rn×n with UUT = I and V ∈ Rm×m with V V T = I. The matrix Σ is a n×m matrix

with Σii = σi, i = 1, ..., n and zero elsewhere. σi are non-negative numbers and furthermore

it holds that σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0. The matrix decomposition 2.17 is called singular value
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decomposition of A, and σi are the singular values. The columns of the two matrices U and

V are referred to as left and right singular vectors. The matrix A can also be depicted using

these left and right singular vectors as

A =
n∑
i=1

σi~ui~v
T
i . (2.18)

If the singular values σi for i > r are much smaller than σ1 to σr the matrix A can be approxi-

mated by

A∗ =
r∑
i=1

σi~ui~v
T
i . (2.19)

The 2-induced norm of the error matrix E = A− A∗, defined as

‖E‖2-ind = sup
~x6=0

‖E~x‖2

‖~x‖2

, (2.20)

is given by σr+1. SVD and EVD are closely related since the singular values σi of A correspond

to the positive square roots of the eigenvalues of AAT . Analogously, the left singular vectors ~ui
correspond to the eigenvectors of AAT while the right singular vectors ~vi are the eigenvectors

of ATA.

2.3.1.3 Concepts from Systems Theory

In systems theory, models are usually classified in terms of stability, controllability and observ-

ability. These fundamental system characteristics also play crucial roles in model reduction.

Stability, for example, is required in order to guarantee that the approximation error is finite.

If a system is unobservable, it comprises internal dynamics that do not have any influence on

the system output. Hence, the unobservable system states can simply be neglected. Below we

will introduce and define these characteristics regarding linear systems. However, note that

these fundamental properties find analogues in the theory of nonlinear systems.

Stability. The linear system 2.10 is called stable if, for vanishing inputs ~u ≡ 0, all solution

trajectories are bounded. The system is called asymptotically stable if the trajectories go to

zero for t → ∞. For linear systems asymptotic stability is given if and only if the real parts

of all eigenvalues of the dynamic matrix A are negative. A system is stable if and only if all

eigenvalues of A have nonpositive real parts, and furthermore all eigenvalues with vanishing

real parts have multiplicity one. The stability of the nonlinear system 2.11 can be checked by

calculating the eigenvalues of its Jacobian matrix J . However, note that if the Jacobian has

eigenvalues with vanishing real parts this does not allow us to decide whether the system is

stable or not. In this case, one has to use the Lyapunov criterion to analyze the stability of the

system [5].
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Observability. Let us consider the linear ODE system[
~̇x1

~̇x2

]
=

[
A1,1 0

A2,1 A2,2

][
~x1

~x2

]
+

[
B1

B2

]
~u

[
~x1(0)

~x2(0)

]
=

[
~x1,0

~x2,0

]

~y = C1~x1.

(2.21)

Obviously, the variables denoted as ~x2 do not have any influence on the output variables ~y.

Hence, any initial states whose values for ~x1,0 coincide result in identical outputs for arbitrary

initial conditions ~x2,0. The differences in the states ~x2 cannot be observed considering these

outputs. From this, the definition of observability follows.

Definition: A system is called observable, if and only if for each pair of distinct initial con-

ditions ~x0,1 and ~x0,2 with ~x0,1 6= ~x0,2 the produced output of the autonomous system is distin-

guishable [65, 119].

Apparently, the question of whether a system is observable or not, as well as, how many and

which state variables can be observed, is closely related to the choice of the output variables.

The dimension d of the so-called observability space can be determined for linear systems by

d = rank(Q) with Q =


C

C A
...

C An−1

 . (2.22)

The first d linearly independent rows of Q build a basis (~ei) for the observability space O [65].

For d = n the system is called observable.

These considerations imply that an unobservable system can always be reduced without affect-

ing the dynamics of the output variables. In Example 2.21, a reduced system would exclusively

comprise the ODEs for the state variables ~x1. Such reductions are exact with respect to the

output. Hence, methods that are based on the elimination of unobservable states are often

referred to as exact reduction techniques.

Controllability. Now let us consider a differently structured linear system of the form[
~̇x1

~̇x2

]
=

[
A1,1 A1,2

0 A2,2

][
~x1

~x2

]
+

[
B1

0

]
~u ~x(0) = ~x0

~y = C~x.

(2.23)

In this case the state variables ~x2 cannot be influenced by the inputs. Hence, the chosen input

does not allow for the control of the system in any desired way, which explains why the system

is said to be uncontrollable.
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Definition: A system is called controllable, if it can be directed from an arbitrary initial state

to any desired final state within a finite time frame by choosing a convenient input signal [65].

In analogy to the considerations regarding observability, there also exists a controllability space

C whose dimension and basis can be deduced from the matrix

P =
[
B AB . . . An−1B

]
. (2.24)

Uncontrollable systems can also be reduced without affecting the dynamics of the output, if

an additional assumption is fulfilled. If the dynamics of the uncontrollable subsystem (~x2

in Example 2.23) is already decayed, ~x2 can be replaced by its steady state value which, in

the example previously discussed, corresponds to zero. Note, that controllability of nonlinear

systems can be defined in numerous ways. In this thesis, a nonlinear system which is defined

on a manifold Mn shall be called controllable if it can be directed from an arbitrary initial state

~x0 ∈Mn to any final state ~xe ∈Mn in a finite time frame.

2.3.2 Reduction Methods Based on Time-Scale Separations

A few time-scale based model reduction methods will be reviewed in this section. In this section,

we distinguish between methods for linear and nonlinear ODE models. It is worth noting that

all reduction techniques discussed for nonlinear systems are also applicable to linear ones.

2.3.2.1 Linear Systems

In the linear case, the system’s time-scales can be characterized by its eigenvalues λi. If the

real and the imaginary parts of all eigenvalues vary over some orders of magnitude, the system

comprises processes that evolve at very different time-scales. As described above, the linear

system can be diagonalized under certain conditions using a state space transformation ~z =

T−1~x. The special property of the transformed system is the complete separation of the different

time-scales

~̇z = T−1AT︸ ︷︷ ︸
A∗

~z + T−1B︸ ︷︷ ︸
B∗

~u A∗ = diag(λi)

~y = C T︸︷︷︸
C∗

~z.
(2.25)

The slow dynamics of the output variables can be approximated by taking the steady state

assumption for all fast variables zi. Let us assume that the states are divided into slow states

~z1 and fast states ~z2 [
~̇z1

~̇z2

]
=

[
diag(λ1,i) 0

0 diag(λ2,i)

]
~z +

[
B∗1
B∗2

]
~u

~y =
[
C∗1 C∗2

]
~z.

(2.26)
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Taking the quasi steady state assumption for ~z2 results in a reduced model of the following

form

~̇z1 = diag(λ1,i)~z1 +B∗1~u

~y = C∗1~z1 − C∗2diag

(
1

λ2,i

)
B∗2~u.

(2.27)

This approach is also known as singular perturbation method, which can be generalized for

nonlinear systems, as shown below. The advantage of this model representation is not only

the reduced number of ODEs, but also the fact that the ODEs are completely decoupled. One

necessary requirement for the applicability of this method, besides the linearity of the model,

is that all parameters are numerically determined.

2.3.2.2 Nonlinear Systems

As already mentioned, the singular perturbation approach is also applicable to nonlinear sys-

tems, but it requires some modifications. Another very important approach applicable to

nonlinear systems is the rapid equilibrium assumption. Both approaches will be outlined in the

following paragraphs.

Singular Perturbations. Singular perturbation theory has been extensively studied in

mathematical literature [130, 131, 133, 61, 62]. The nonlinear model equations have to be

converted to the form [
~̇z1

ε~̇z2

]
=

[
~f1(~z1, ~z2, ~u, ε)
~f2(~z1, ~z2, ~u, ε)

]
~z1 ∈ Rn−d

~z2 ∈ Rd

~y = ~h(~z1, ~z2).

(2.28)

The scalar ε represents all parameters that are small enough to be neglected. The model

can be reduced by a singular parameter perturbation setting ε = 0. This corresponds to the

assumption that the states ~z2 are very fast compared to ~z1 and hence are assumed to be in quasi

steady state. The resulting model consists of n−d ODEs and d algebraic equations. By solving

these algebraic equations for ~z2 and subsequent insertion in the remaining ODEs, one obtains

the reduced model. However, note that one has to face different problems when following this

procedure. The d nonlinear coupled algebraic equations may not be resolvable analytically, or

numerous different real roots may exist. Another aspect one has to keep in mind is that complex

dynamic behaviors of the unreduced system, such as limit cycles or chaotic behavior, might get

lost using this approach. The conditions under which the singular perturbation method can be

applied were formulated by Tikhonov [130, 131].

Rapid Equilibrium Assumption. In contrast to the approach described above, the rapid

equilibrium assumption does not focus on the question of which states quickly reach their
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steady state but rather which processes are fast in comparison to others. In terms of reaction

networks this corresponds to the question of which reactions quickly converge to equilibrium.

In this context the term equilibrium corresponds to the thermodynamic equilibrium which, in

the case of reactions, is characterized by vanishing reaction rates. Consider a reaction A � B

with the reaction rate r = kon[A]− koff[B], thermodynamic equilibrium is characterized by

kon[A]− koff[B] = 0 ⇒ Keq =
kon

koff

=
[B]

[A]
. (2.29)

The parameter Keq is the equilibrium constant. A more detailed introduction to thermody-

namics of reactions and reaction networks is given in Chapter 3.

In order to describe the reduction method based on the rapid equilibrium assumption we choose

a model representation using the stoichiometric matrix N and the vector of reaction rates ~r

~̇x = N~r ~x =

[
~x1

~x2

]
, ~r =

[
~r1

~r2

]
=

[
~g1(~x1, ~x2)

~g2(~x1, ~x2)

]
~y = ~h(~x).

(2.30)

Now, we assume that all reactions described by ~r2 are fast in comparison to the other reactions.

The mathematical formulation of this assumption yields ~g2(~x) = 0. Observe, that this assump-

tion is not equivalent to ~r2 = 0. The reaction rates only vanish if the whole reaction network

is in thermodynamic equilibrium. In fact we presume that ~r2 is chosen such that all species

involved in the corresponding reactions are equilibrated in zero time. These so defined reaction

rates ~̃r2 are not explicitly given through our assumption, but they are required to evaluate the

ODEs as defined above. In order to determine these rates we take the time derivative of the

algebraic equations (
∂~g2

∂~x

)
︸ ︷︷ ︸

=J

~̇x = 0 ⇔ J
[
N1 N2

] [~r1

~̃r2

]
= 0, (2.31)

where J is the Jacobian matrix. Equation 2.31 is linear in the unknown reaction rates ~̃r2, and

the solution is given by

~̃r2 = − (JN2)−1 JN1~r1 = ~̃g2(~x,~r1). (2.32)

Insertion of this result into the model equations still does not yield a reduced number of ODEs.

One additionally has to include the algebraic equations ~g2(~x1, ~x2) = 0, which can be solved for

~x2. The reduced model, hence, only comprises the n− d states ~x1.

2.3.3 Reduction Methods Based on Observability Measures

We have already mentioned above that observability, as well as controllability, are important

properties of dynamic systems and can be used as indicators for possible model reductions.
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If a system comprises unobservable states, they can be eliminated without affecting the in-

put/output behavior. This reduction principle can be extended by eliminating states that are

difficult to observe, i.e., those that yield small amounts of observation energy. More detailed

information about the aforementioned, as well as further reduction methods can be found in [5].

2.3.3.1 Linear Systems

States of linear systems that are difficult to observe or control can be directly determined from

the observability and controllability gramians Q and P . They are given by the eigenvectors

of these gramians corresponding to small eigenvalues. The observability and controllability

gramians are defined as

Q =

∫ ∞
0

eA
T tCTCeAtdt (2.33)

P =

∫ ∞
0

eAtBBT eA
T tdt (2.34)

and therefore satisfy the following Lyapunov equations

ATQ+QA+ CTC = 0 (2.35)

AP + PAT +BBT = 0. (2.36)

In order to eliminate states that are difficult to observe and at the same time difficult to

control, the system is transformed to a so-called balanced representation. A system is said to

be balanced if

Q = P = Σ = diag(σi), (2.37)

with σi ≥ σi+1 for all i = 1, 2, ..., n− 1. In the balanced system[
~̇z1

~̇z2

]
=

[
A∗1,1 A∗1,2
A∗2,1 A∗2,2

]
~z +

[
B∗1
B∗2

]
~u Σ =

[
Σ1 0

0 Σ2

]
~y =

[
C∗1 C∗2

]
~z

(2.38)

the concurrent controllability and observability measure σi can be directly assigned to the state

zi. Hence, all d states corresponding to the d smallest values σi can be eliminated without

strongly affecting the input/output behavior of the system if σn−d � σn−d+1. Since the states

~z2 only rarely influence the input/output behavior of the system, they can simply be set to

zero as one possible approximation. Another possibility is taking the steady state assumption

for ~z2, which guarantees a vanishing steady state error.

2.3.3.2 Nonlinear Systems

In the case of nonlinear systems, balanced truncation is practically unfeasible. An alternative

approach is given by the proper orthogonal decomposition (POD) method. For a fixed input
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~u, the trajectory of the systems can be determined by simulation and evaluated at certain

instances of time tk. These snapshots of the state trajectory can be accommodated in a matrix

X =
[
~x(t1) ~x(t2) . . . ~x(tN)

]
∈ Rn×N , (2.39)

with N � n. In a second step, the singular value decomposition of X is computed. If the

singular values fall off rapidly, X can be approximated by

X = UΣV T ≈ UkΣkV
T
k , k < n. (2.40)

The matrix Uk can be used as transformation matrix ~z = UT
k ~x with ~z ∈ Rk, which implies the

reduced order state equation

~̇z = UT
k
~f(Uk~z, ~u)

~y = ~h(~z).
(2.41)

However, it should be noted that small approximation errors of this reduced model can only

be guaranteed if the system is stimulated by the input ~u chosen to create the matrix X .

2.3.4 Conclusions

The application of common model reduction techniques to combinatorial models of signal trans-

duction networks is problematic for various reasons. The first problem is that these models are

nonlinear, whereas many model reduction techniques are restricted to linear systems. Methods

available for nonlinear systems have strong limitations. For instance they pose the problem

of resolving a large set of nonlinear algebraic equations in the case of the quasi steady state

assumption. The problem of POD is that the reduced model only provides very good ap-

proximation accuracy for fixed input signals. Furthermore, many of the available techniques

necessitate a state space transformation resulting in a model representation in which the state

variables generally do not correspond to biological characteristics. Another problem is that

the majority of methods require the numerical determination of all parameter values, which

in systems biology are mostly unknown. In fact, one central aspect of model reduction in

systems biology is to provide simpler model structures, more suitable for common parameter

identification methods.

The methods discussed in this thesis can overcome these problems for a large class of biological

signal transduction models. The methods are applicable to nonlinear systems, the required

transformations preserve biological interpretability of the state variables, and one only requires

qualitative information about the parameters values. However, these advantages can only be

achieved at the expense of generality. Thus, the methods are only designed for the reduction

of combinatorial complexity of reaction networks including receptors or scaffold proteins that

provide a large number of binding domains. Additionally, there are some further restrictions

on the reaction kinetics that might be used, which will be discussed later in detail. However,

it has already been stated that the methods always work for mass action kinetics.
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Chapter 3

Thermodynamics of Signal

Transduction

An important aspect in kinetic modeling of complex biochemical reaction networks is the

analysis of thermodynamic constraints following from the well known principle of microscopic

reversibility or detailed balance. In 1902 Wegscheider discussed restrictions for reaction net-

works and showed that the kinetic parameters of reactions forming a reaction cycle have

to fulfill certain constraints [138]. In 1931 Onsager showed that microscopic reversibility

restricts the parameter values for all thermodynamic systems near equilibrium [101, 102].

The fundamentals of this theory are nicely reviewed by Heinrich and Schuster [55]. More

recent discussions focus on the restrictions for stationary far-from-equilibrium flux distribu-

tions [113, 112, 144, 111, 10, 9, 11, 60]. Another subject of recent research in this field is the

question of how to create thermodynamically feasible models of complex reaction networks. The

proposed methods vary from systematic identification of stoichiometric cycles [28], to finding

alternative parameterizations of the model [145, 34].

In this chapter we discuss the implications of detailed balance constraints on signal transduction

networks. We show that thermodynamics highly restricts possible process interactions between

domains of receptors and scaffold proteins. Stoichiometric information is sufficient to derive

some interesting statements about these interactions. Thus, it is possible to decide whether

an interaction, for example between two bindings, might be unidirectional, or whether the two

processes have to interact mutually. It turns out that unidirectionality, which is an important

feature for reduction and modularization, may only occur in special scenarios. The comparison

of simulations and experimental data suggests that the cell actually realizes such unidirectional

interactions. Our analyses also give a new interpretation of the kinetic degrees of freedom in

reaction networks including receptors and scaffold proteins and provide a new intuitive method

to impose detailed balance on these networks.
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3.1 Basic Principles of Thermodynamics

Thermodynamics can be divided into the branches of classical and irreversible thermodynam-

ics [19]. Classical thermodynamics only considers equilibrium states of thermodynamic systems,

while irreversible thermodynamics deals with the processes that try to balance existing dise-

quilibria. Thermodynamic equilibria can be characterized by a small number of macroscopic

state variables such as temperature, pressure and chemical potentials [19]. Another basic fea-

ture of thermodynamic equilibrium is the absence of all driving forces such as temperature

gradients or free energies of reactions. These driving forces are the cause of irreversible balance

processes. Hence, a system can only reach thermodynamic equilibrium if no external forces

are impressed on the system, for example, if the considered system is completely isolated. The

second law of thermodynamics implies that, if no external forces exist, all systems finally have

to end up in thermodynamic equilibrium. The principle of microscopic reversibility or detailed

balance [101, 102] additionally postulates that for vanishing driving forces the conjugated bal-

ance flows also vanish. This can be exemplified considering a simple mono-molecular reaction

A � B. In thermodynamic equilibrium, transitions A → B as well as reverse transitions

B → A still occur at a microscopic scale. However, detailed balance postulates that the fre-

quency of both transitions is equal, and hence the overall flow is zero. From this one can deduce

constraints for kinetic parameters of reaction networks including reaction cycles, which can be

further explained by considering a scaffold protein with two binding domains such as that in

Example 2.5 from the last chapter. The corresponding reaction network

r1 = k1[R(0, 0)] · [L]− k−1[R(L, 0)]

r2 = k2[R(0, E)] · [L]− k−2[R(L,E)]

r3 = k3[R(0, 0)] · [E]− k−3[R(0, E)]

r4 = k4[R(L, 0)] · [E]− k−4[R(L,E)].

(3.1)

obviously forms a cycle (see Figure 3.1). If the system is isolated from its environment it has

to end up in thermodynamic equilibrium and all reaction rates have to vanish (ri = 0). This

leads to the condition that the product of the equilibrium constants along the reaction cycle

has to be

[R(0, 0)] [L]

[R(L, 0)]

[R(L,E)]

[R(0, E)] [L]

[R(0, E)]

[R(0, 0)] [E]

[R(L, 0)] [E]

[R(L,E)]
=
k−1

k1

k2

k−2

k3

k−3

k−4

k4

=
Keq,1Keq,4

Keq,2Keq,3

= 1. (3.2)

This relation is also known as Wegscheider condition [138]. Similar conditions exist for all

independent reaction cycles within a reaction network. Due to combinatorial complexity, the

number of these constraints on the kinetic parameters is very high for signal transduction

networks. This can be further explained by considering a scaffold protein with ten distinct

binding domains. A complete deterministic model of the system, which could be automatically

generated using BioNetGen [13], would comprise 1,034 ODEs and 5,120 reactions. However,

it also comprises 4,097 reaction cycles, which highly restricts the choice of parameters (example

taken from Ederer et al. [34]). If one does not account for these 4,097 restrictions, the chance
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Figure 3.1: A scaffold with two binding domains can exist in four different states. The feasible reactions
in such a system form a reaction cycle.

of creating a model that contradicts the laws of thermodynamics will be very high.

Before the effects of these parameter restrictions are discussed in detail, one very essential

question remains that shall be addressed here. A quite common objection against the usage

of Wegscheider conditions in modeling biological systems is that these parameter restrictions

are deduced from laws characterizing thermodynamic equilibrium, whereas living cells usually

operate far from thermodynamic equilibrium. This rationale seems to be reasonable. However,

it does not bear a more detailed analysis. If we take the assumption that the kinetic parameters

do not change during the evolution of a reaction, the parameter restrictions that are valid for

thermodynamic equilibrium also have to hold for non-equilibrium states. The reason why

living cells do not reach thermodynamic equilibrium is not that the kinetic parameters of the

underlying reaction networks do not fulfill the Wegscheider condition, but that these reaction

networks are constantly stimulated by external forces (e.g. energy from nutrition). As soon as

a cell is isolated from its environment it will die and finally reach thermodynamic equilibrium.

A virtual cell that is modeled without taking the Wegscheider conditions into account will not

provide the same behavior. Only the kinetic parameters of reactions forming a futile cycle do

not have to fulfill Wegscheider conditions. A futile cycle is defined as a set of opposing, non-

equilibrium reactions catalyzed by different enzymes which act simultaneously. At least one of

the reactions in a futile cycle has to be driven by consumption of an energy rich compound

such as ATP. However, the existence of futile cycles within a reaction network does not imply
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that none of the Wegscheider conditions have to be considered. The Wegscheider conditions

for all true stoichiometric cycles within the network still have to hold in that case.

3.2 Chemical Potentials, Equilibrium Constants and the

Wegscheider Condition

In this section, we give a brief introduction to the elementary relations between chemical po-

tentials, equilibrium constants of reactions and Wegscheider conditions, which build the basis

for further considerations. The chemical potential of a chemical reactant i is defined as the

partial derivative of the Gibbs free energy

µi =

(
∂G

∂ni

)
T,p,nj 6=i

. (3.3)

Using the ideal gas law one can deduce the following formula for the chemical potential

µi = µi,0(T, p) +RT lnxi (3.4)

of ideal mixtures. Therein, µi,0 is the standard potential of the chemically pure substance which

is only a function of temperature T and pressure p, R is the ideal gas constant and xi is the

mole fraction of component i. Note that kinetic modeling usually is based on the assumption

that the mixture in which the reaction takes place behaves ideally. Taking the assumption that

we consider strongly diluted aqueous solutions in which the total molarity ctot remains nearly

constant, which is generally assumed for cells, the chemical potential can also be written as

µi = µ∗i,0 +RT ln ci, (3.5)

wherein µ∗i,0 = µi,0(T, p) − RT ln ctot, and ci is the dimensionless molarity of substance i. Ob-

serve, that µ∗i,0 does not describe the chemical potential of the pure substance i but the chemical

potential of an one molar aqueous solution. We will only consider the chemical potential of one

molar aqueous solutions, and therefore remove the asterisk in order to simplify the notation.

From the second law of thermodynamics it follows that any reaction∑
reactants

|νi|Ei �
∑

products

|νi|Pi (3.6)

is in thermodynamic equilibrium if the free energy of reaction is

∆gR =
∑
i

νiµi = 0. (3.7)

Herein, νi are the stoichiometric coefficients, which are defined to be negative for reactants and

positive for products. The free energy of a reaction can be interpreted as a chemical force which

drives the corresponding reaction flow. From the stated equilibrium condition,∏
i

cνi
i = exp

(
−
∑
νiµi,0
RT

)
:= Keq (3.8)
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follows directly, which is defined as the equilibrium constant of the considered reaction. This

relation is also an explanation for the possible restrictions on the choice of equilibrium constants

in a reaction network. An equilibrium constant can be determined from a sum of µi,0. If one

considers a reaction network comprising i0 substances, it is obvious that at most i0 linearly

independent sums of chemical standard potentials might exist.

Considering a complete reaction network with a high number of reactions, the condition for

thermodynamic equilibrium (Equation 3.7) can be written as

NT~µ = 0 ⇔ NT (~µ0 +RT ln~c) = NT~µ0 +RT ln ~Keq = 0, (3.9)

in which NT is the transposed stoichiometric matrix of the reaction network and ~Keq the vector

of all equilibrium constants. In the next step this equation is multiplied by a kernel matrix B,

which has the property such that B ·NT = 0. From this, it follows that

B ln ~Keq = 0 (3.10)

must hold for any reaction system. This is the so-called generalized Wegscheider condition,

which should be accounted for in modeling reaction networks [55].

From these considerations one can see that each representation of a reaction network using

chemical potentials can be directly translated into equilibrium constants ~Keq. Observe that

equilibrium constants that are determined in that way will automatically fulfill the Wegscheider

conditions. On the other hand, it is also clear that a parameterization of a reaction network that

does not fulfill the Wegscheider conditions cannot have any equivalent representation in terms

of chemical potentials. By determining the chemical potentials one directly obtains equilibrium

constants fulfilling the Wegscheider conditions. This is a big advantage and will help us to find

a descriptive way to parameterize and analyze signal transduction networks comprising scaffold

proteins and receptors.

3.3 The Chemical Potential of Scaffold Proteins

As we have seen, one can assign a chemical potential to each substance within a cell. However,

much more important than the absolute values of the chemical potentials are the sums and

differences of chemical potentials that are defined by the equilibrium conditions. Hence, we

will introduce a parameterization of the chemical potentials that will allow us to characterize

the important sums and differences in a simple and structured way.

3.3.1 Example

The idea can be further explained by considering the example introduced above (Equation 3.1,

Figure 3.1). The complete reaction system comprises six chemical substances L, E, R(0, 0),

R(L, 0), R(0, E) and R(L,E). Interestingly, the three species R(L, 0), R(0, E) and R(L,E)
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are composed by the other three components. Hence, we first define three different chemical

potentials for the three basic components or monomers L, E and R(0, 0), namely µL,0, µE,0 and

µR00,0. Observe, that here we consider the chemical potential of one molar aqueous solutions,

since these are required to formulate the equilibrium constants. For the sake of simplicity, we

will omit the index 0 in the following discussion. If we now assume that the binding of the

two proteins L and R(0, 0) has no effect on the chemical potential, the chemical potential of

R(L, 0) is the sum of µL and µR00. Under this assumption (µRL0 = µR00 + µL), it follows for

the equilibrium constant

Keq = exp

(
−−µL − µR00 + µRL0

RT

)
= 1. (3.11)

It is clear that this assumption is not suitable in most cases. However, we use this assumption

as a basis for some further considerations and introduce an additional term ∆µL describing the

deviation of the real chemical potential from the ideal assumption. The chemical potentials of

the complexes R(L, 0) and R(0, E) are given by

µRL0 = µR00 + µL + ∆µL

µR0E = µR00 + µE + ∆µE.
(3.12)

One can see that the equilibrium constants of the reactions r1 and r3 are defined as

Keq,1 = exp

(
−∆µL
RT

)
Keq,3 = exp

(
−∆µE
RT

)
. (3.13)

The two terms ∆µL and ∆µE correspond to the Gibbs free binding energies of the two considered

reactions. Analogously, we can define the chemical potential of the substance µRLE, as

µRLE = µR00 + µL + µE + ∆µ. (3.14)

In contrast to the previous definitions ∆µ does not describe one single binding effect. Hence,

the term ∆µ can be divided into the already known binding effects ∆µL and ∆µE. If one

assumes that ∆µ = ∆µL + ∆µE, the resulting equilibrium constants of the reactions r2 and r4

will be the same as these for reactions r1 and r3

Keq,2 = Keq,1 = exp

(
−∆µL
RT

)
Keq,4 = Keq,3 = exp

(
−∆µE
RT

)
. (3.15)

However, ∆µ cannot, in general, be characterized simply as the sum of these two effects.

Generally, one has to assume that the simultaneous binding of L and E has an additional effect

on the chemical potential of R(L,E). For this reason, the chemical potential of this complex

can be written as

µRLE = µR00 + µL + µE + ∆µL + ∆µE + ∆µLE︸ ︷︷ ︸
=∆µ

. (3.16)

With this definition one can calculate the equilibrium constants of the reactions r2 and r4 as

Keq,2 = exp

(
−∆µL + ∆µLE

RT

)
= exp

(
−∆µL
RT

)
exp

(
−∆µLE

RT

)
= Keq,1 aLE

Keq,4 = exp

(
−∆µE + ∆µLE

RT

)
= exp

(
−∆µE
RT

)
exp

(
−∆µLE

RT

)
= Keq,3 aLE.

(3.17)
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Interestingly, both equilibrium constants can be written as products of the already defined

constants for the reactions r1 and r3 and a common factor aLE. The three parameters Keq,1,

Keq,3 and aLE, which directly correspond to the quantities ∆µL, ∆µE and ∆µLE, represent the

three degrees of freedom one has in order to choose the equilibrium constants of the considered

system. The values of µR00, µL and µE do not play any role in the calculation of the equilibrium

constants. Hence, the chosen parameterization separates important and unimportant fractions

of the chemical potential and additionally allows the simple translation into equilibrium con-

stants.

3.3.2 Generalized Consideration

In analogy to the already discussed example, we will define a generalized pattern to describe

the chemical potentials of all feasible multiprotein species which can occur in systems including

scaffold proteins and receptors. We will show that the equilibrium constants in these reaction

systems can always be characterized in a similar way, as demonstrated above. The equilibrium

constants of all reactions describing the binding of one effector to a certain domain can always

be formulated using a standard equilibrium constant and additional multiplicative factors.

The multiplicative factors describe the thermodynamically feasible effects of domain or process

interactions.

In order to generalize our considerations, we first introduce some definitions. We will consider a

scaffold protein R which provides n distinct binding domains for n distinct effectors Ei. In order

to simplify our considerations we assume that at each domain only one specific protein can bind.

Note that this assumption does not restrict the generality of the results. A certain multiprotein

complex can be written as R(i1, ..., in), where ik is zero if the k-th domain is not occupied

and one if it is occupied. Below, we will discuss how the corresponding chemical potentials

µ(i1, ..., in) for all these multiprotein species can be characterized. For this characterization we

define different terms ∆µ(i1, ..., in) which describe the effects of certain binding constellations

on the chemical potential.

Using the so defined quantities the chemical potential of each feasible multiprotein complex can

be written as

µ(i1, ..., in) =µ(0, ..., 0) + i1µE1 + ...+ inµEn

+ i1∆µ(1, 0, ..., 0) + ...+ in∆µ(0, ..., 0, 1)

+ i1 i2∆µ(1, 1, 0, ..., 0) + ...+ in−1 in∆µ(0, ...0, 1, 1)

+ i1 i2 i3∆µ(1, 1, 1, 0, ..., 0) + ...+ in−2 in−1 in∆µ(0, ..., 0, 1, 1, 1)

...

+ i1...in∆µ(1, ..., 1).

(3.18)

Observe, that this reparameterization of the chemical potentials is unique and bijective, i.e.

each chemical potential has a unique representation in the new formalism. Analogously, all new



3.3 The Chemical Potential of Scaffold Proteins 37

∆µ terms can also be uniquely determined if the chemical potentials of all species are known.

Mathematically, this can be considered as a linear transformation from one set of variables to

another. This transformation is structurally equivalent to that introduced in Chapter 4. A

proof that this transformation is unique and invertible is also given there.

The formula will be further explained by considering a scaffold protein with three binding

domains. In this case the chemical potentials of the two complexes R(1, 0, 1) and R(1, 1, 1) are

given by

µ(1, 0, 1) =µ(0, 0, 0) + µE1 + µE3 + ∆µ(1, 0, 0) + ∆µ(0, 0, 1) + ∆µ(1, 0, 1)

µ(1, 1, 1) =µ(0, 0, 0) + µE1 + µE2 + µE3 + ∆µ(1, 0, 0) + ∆µ(0, 1, 0) + ∆µ(0, 0, 1)

+ ∆µ(1, 1, 0) + ∆µ(1, 0, 1) + ∆µ(0, 1, 1) + ∆µ(1, 1, 1).

(3.19)

This notation may appear cumbersome to the reader. However, it proves to be very helpful in

the characterization of the dependencies of equilibrium constants in a very simple way. This

becomes apparent when considering the Gibbs free reaction energy of different binding reactions.

We will consider binding of an effector E1, to the scaffold protein in different scenarios, and

calculate the corresponding equilibrium constants of these reactions. The resulting equilibrium

constants will automatically fulfill the Wegscheider conditions. Firstly, we assume that E1

binds to a scaffold protein with all domains being unoccupied. The Gibbs free reaction energy

for this reaction is ∆gR = ∆µ(1, 0, ..., 0). With this we can formulate

RT lnKeq = −∆µ(1, 0, ..., 0) Keq = exp

(
−∆µ(1, 0, ..., 0)

RT

)
= Keq,0. (3.20)

If we consider the same binding process with a scaffold protein that has one occupied domain,

for example the second one, it follows that

RT lnKeq = − (∆µ(1, 0, ..., 0) + ∆µ(1, 1, 0..., 0)) Keq = Keq,0 a110...0. (3.21)

Hence, the original equilibrium constant is altered by the additional factor a110...0. Importantly,

the same factor also occurs if one considers the binding of E2 to a scaffold with an occupied

first binding domain. This means that each pair of binding domains can be characterized by

two equilibrium constants and an additional common modification factor. The two equilibrium

constants describe the binding of an effector to the related domain of the scaffold, if the latter is

completely unoccupied. The modification factor illustrates how much the equilibrium constants

of both domains change if the effector binds to a scaffold at which the other domain is already

occupied.

Using these findings we can already partly characterize the scenario where a third effector is

considered. Firstly, it is clear that for each domain one can define a basic equilibrium constant,

describing effector binding to the domain of the completely unoccupied scaffold. Furthermore,

in the consideration of three binding domains, there exist three distinct pairs of domains,

and for each pair one can determine a modification factor. If the scaffold has already bound
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two effectors E2 and E3, and the third effector E1 binds, the equilibrium constant can be

characterized by

−RT lnKeq = ∆µ(1, 0, ..., 0) + ∆µ(1, 1, 0..., 0) + ∆µ(1, 0, 1, 0, ..., 0) + ∆µ(1, 1, 1, 0, ..., 0) (3.22)

with Keq = Keq,0 a110...0 a1010...0 a1110...0. Now, one has three different modification factors. Two

of them describe the already discussed effects between pairs of domains, the third one describes

additional effects which only occur if two domains are already occupied and the third domain

becomes occupied. Observe that for all cases in which two of the effectors E1, E2 and E3

have already bound to the scaffold and the third one binds, this new modification factor is

exactly the same. The same consideration can be made for all triples of scaffold domains. One

can already see a pattern in the structure of the derived equilibrium constants. The available

degrees of freedom for the equilibrium constants are given by a basic equilibrium constant for

each single domain, first tier modification factors for all distinct pairs of domains and second

tier modification factors for all distinct triples of domains. Further analyses reveal that more

tiers of modification factors for all higher tuples of domains also exist. Each modification

factor characterizes the interaction of the corresponding pair, triple or higher tuple. If a factor,

for example a1110...0, equals one, this means that the effects on the tier below (here of pairs)

superpose undisturbed.

Hence, one can create a thermodynamically feasible model of a scaffold protein or receptor

without explicitly considering the Wegscheider conditions. It is only necessary to guarantee

that the equilibrium constants fit into the described pattern. This extremely simplifies the

generation of thermodynamically feasible models for reaction networks that include scaffolds

or receptors.

3.4 Restrictions on Process Interactions

In the previous section, it is shown how thermodynamic constraints restrict the choice of para-

meters in modeling signal transduction networks or other biological systems, including scaffold

proteins or receptors. The provided formalism allows one to account for all these constraints in

a very simple way. Now we discuss the implications of these constraints on signal transduction.

Initially, we again consider the simple example of a receptor R with two binding domains.

In the background section we already discussed theoretically feasible interactions between the

two domains, and we defined conditions for the kinetic parameters that have to be fulfilled

in order to realize a certain type of interaction. Additionally, it has been shown that from a

thermodynamic point of view, the equilibrium constants have to fulfill the following conditions

Keq,2 = Keq,1 aLE Keq,4 = Keq,3 aLE. (3.23)

Under this restriction not all theoretically feasible interactions can occur, as shown below:
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• non-interacting binding processes

The relations between the kinetic parameters that are required to realize non-interacting

binding domains (k2 = k1, k−2 = k−1, k4 = k3 and k−4 = k−3) do not contradict the

Wegscheider condition. These relations only imply that aLE = 1 (∆µLE = 0), which is

thermodynamically feasible and reflects the missing interaction between the two binding

processes.

• unidirectionally interacting binding domains

An unidirectional interaction can be realized if k2 = k1, k−2 = k−1, which corresponds

to Keq,2 = Keq,1, and additionally k4 6= k3, k−4 6= k−3, which in general implies Keq,4 6=
Keq,3. Obviously, these requirements contradict the Wegscheider condition, since from

Keq,2 = Keq,1 it follows aLE = 1, while Keq,4 6= Keq,3 would require aLE 6= 1. Thus,

thermodynamics does not allow unidirectional interactions between binding processes

at the level of equilibrium constants, which is a very significant restriction. However,

thermodynamics only makes statements about the equilibrium constants not about the

reaction velocities. One special case of unidirectional interaction is allowed, namely if

k4 = k3 b 6= k3 and k−4 = k−3 b 6= k−3, where b ∈ R+. In this case, the equilibrium

constants Keq,4 and Keq,3 are equal. The two reactions proceed with different velocities.

In conjunction with the aforementioned futile cycles, this type of unidirectionality may

play an important role in signal transduction. This will be discussed in more detail in

the subsequent section.

• mutually interacting processes

Mutually interacting processes are all processes which do not fit into the categories non-

interacting or unidirectionally interacting. There are no requirements for the kinetic

parameters from a theoretical point of view. However, the thermodynamic restrictions

given by the Wegscheider conditions exist. From this it follows that if binding of L

increases or decreases the affinity of E for the receptor R by a factor aLE, the affinity

of L for R will also increase or decrease by exactly the same factor if E is bound to R.

Again, there are no restrictions on the reaction velocities.

• all-or-none interactions

All-or-none interactions are an important special case of mutual interactions, which are

characterized by vanishing kinetic parameters. A kinetic parameter which is exactly zero

is not feasible from a thermodynamic point of view, which means that all pairs of binding

and modification processes always form reaction cycles. Naturally, the kinetic parameters

of the reactions forming these cycles have to fulfill the Wegscheider condition. However,

reactions can proceed at a very slow pace, such that the assumption of vanishing kinetic

parameters, meaning that the reaction does not proceed, is reasonable. A model repre-

sentation of all-or-none interactions, consistent with the laws of thermodynamics, is that

both ki and k−i go to zero such that Keq,i remains constant and fulfills the Wegscheider

condition. From an applicatory point of view these reactions are too slow to play any role
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for the dynamic behavior of the network and can be completely omitted. Hence, the re-

maining reaction network does not form a cycle anymore, and the Wegscheider condition

does not give any restrictions on all-or-none interactions.

Our considerations show that non-interacting binding processes, as well as all-or-none interac-

tions are thermodynamically feasible. However, we have found strong restrictions for mutual

and especially for the theoretically very important unidirectional interactions. These principal

statements also hold for scaffold proteins with higher numbers of binding domains, although

these have a greater degree of freedom. Non-interacting binding processes can be always real-

ized if the modification factors of all interaction tiers equal one. All-or-none interactions are

not restricted by the Wegscheider conditions and are always feasible since they are based on the

assumption of being extremely slow reactions. Unidirectionality is highly restricted and only

feasible in terms of reaction velocities. In the following section, we will discuss under which

conditions the assumption of unidirectional interactions provides a good approximation of the

real system behavior despite its contradiction of the Wegscheider condition.

3.5 Unidirectionality in Signal Transduction

Unidirectionality is an important feature of technical signal transmission systems. Unidirec-

tionality in this context means that the signal transmission is not influenced by the state of

the receiver, but only by the emitter. The question of whether biological signal transduc-

tion networks can and do utilize unidirectional interactions is of special interest. Unidirec-

tionality of process interactions allows the systematic and significant reduction of combinato-

rial complexity in mathematical signal transduction models, and it also allows to modularize

them [32, 78, 16, 17]. In a first step, we will discuss theoretic possibilities that exist to realize at

least approximately unidirectional signal transduction without contradicting the Wegscheider

condition. Additionally, we will show that in the case of insulin signaling, unidirectionality

seems to be realized.

3.5.1 Unidirectionality and Futile Cycles

We have already discussed above that a unidirectional change of reaction velocities does not

contradict the Wegscheider condition. However, the acceleration or deceleration of a reaction

does not seem to be sufficient to achieve functional signal transduction. Measurements show

that stationary levels of occupancy before and after stimulation of a receptor differ [42, 82].

However, one has to be aware of the fact that stationarity of a reaction system does not imply

that it has reached thermodynamic equilibrium. For instance if an open system is constantly

perturbed by a constant impressed force, it reaches a stationary non-equilibrium state. These

states are characterized by stationarity but non-vanishing driving forces. Hence, stationary

levels of occupancy might vary in nature without equilibrium constants of reactions changing.
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Figure 3.2: All shown reactions are reversible. The arrows only indicate which reactions are considered
to be the forward reactions and which are the backward ones. In Figure 3.2 A the system is param-
eterized analogously to Figure 3.1. In this case the model has to fulfill two Wegscheider conditions,
namely K1K4aK

−1
2 K−1

3a = 1 and K1K4bK
−1
2 K−1

3b = 1. The parameterization of Figure 3.2 B realizes
the independence of L binding and concurrently fulfills the two Wegscheider conditions.

As discussed before, a stationary reaction system which is not in thermodynamic equilibrium is

always characterized by at least one impressed driving force and non-vanishing reaction flows.

A system like that has to include at least one futile cycle which is constantly consuming energy.

A futile cycle is defined as a set of opposing, non-equilibrium reactions that are catalyzed

by different enzymes and which act simultaneously, with at least one of the reactions being

driven by energy consumption. From this, it follows that a stationary non-equilibrium is only

sustainable as long as the provided reservoir of energy is not exhausted. The most important

energy reservoir in living cells is given by ATP.

In order to analyze the dynamic behavior of a reaction system including futile cycles, we
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consider a scaffold protein R with two binding domains (see Figure 3.2). One of the two

domains can bind a ligand L and the other domain can be phosphorylated. All reactions are

assumed to be reversible. The arrows in Figure 3.2 only indicate which reactions are regarded

as forward and which as backward reactions. Although the considered scaffold also possesses

two binding domains, the considered reaction network differs from that given by Equation 3.1.

The complete mechanistic model comprises four phosphorylation reactions, two reactions in

which ATP is converted to ADP, and two in which free phosphates bind to and dissociate from

the domain (see Figure 3.2 A). This reaction network consists of two independent true reaction

cycles meaning that it has to fulfill two Wegscheider conditions, namely K1K4aK
−1
2 K−1

3a = 1

and K1K4bK
−1
2 K−1

3b = 1. All cycles that are not futile cycles, according to the definition given

above, are true cycles. Let us take the assumption that ligand binding is not influenced by

phosphorylation. As a result the thermodynamic constraints imply that both phosphorylation

reactions in which ATP is converted to ADP must have the same equilibrium constants and

both reactions in which free phosphates bind must also have the same equilibrium constants (see

Figure 3.2 B). However, we can assume that these reactions proceed with different velocities

depending on whether the scaffold has bound L or not. For instance, one can assume that

L is an enzyme which only accelerates or decelerates the reactions but does not change their

equilibrium constants. Hence, the six reactions of the considered system can be written as

r1 = k1 [L] [R(0, 0)]− k−1 [R(L, 0)]

r2 = k1 [L] [R(0, P )]− k−1 [R(L, P )]

r3a = k3a [ATP ] [R(0, 0)]− k−3a [ADP ] [R(0, P )]

r4a = x (k3a [ATP ] [R(L, 0)]− k−3a [ADP ] [R(L, P )])

r3b = k3b [P ] [R(0, 0)]− k−3b [R(0, P )]

r4b = y (k3b [P ] [R(L, 0)]− k−3b [R(L, P )]) ,

(3.24)

in which x and y are real positive numbers describing the change of velocity for both forward

and backward reactions, caused by L. If one additionally assumes that the concentrations

[ATP], [ADP] and [P] in the cell are approximately constant, the reactions r3a and r3b as well

as r4a and r4b can be combined to form two virtual phosphorylation reactions

r∗3 = (k3a [ATP ] + k3b [P ])︸ ︷︷ ︸
=k∗3

[R(0, 0)]− (k−3a [ADP ] + k−3b)︸ ︷︷ ︸
=k∗−3

[R(0, P )]

r∗4 = (x k3a [ATP ] + y k3b [P ])︸ ︷︷ ︸
=k∗4

[R(L, 0)]− (x k−3a [ADP ] + y k−3b)︸ ︷︷ ︸
=k∗−4

[R(L, P )].
(3.25)

The asterisk indicates that the reaction is a virtual reaction. The resulting reduced network

structure only now consists of one single cycle. Interestingly, the virtual equilibrium constants

of the two reactions r∗3 and r∗4 which we define as the quotient of kon and koff

K∗3 =
k3a [ATP ] + k3b [P ]

k−3a [ADP ] + k−3b

K∗4 =
x k3a [ATP ] + y k3b [P ]

x k−3a [ADP ] + y k−3b

(3.26)
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are not identical. They only describe a steady state and not a thermodynamic equilibrium of

the system. It is possible to unidirectionally shift a steady state but not thermodynamic equilib-

rium. Thus, the reduced network with its single reaction cycle does not fulfill the Wegscheider

condition. This reduced model includes a unidirectional process interaction and describes a shift

between non-equilibrium steady states correctly, if all assumptions made above are fulfilled.

However, the reduced model cannot describe the behavior of the system near thermodynamic

equilibrium.

The important message is that unidirectional interactions are possible and may occur. Re-

quirements are that the modification of a scaffold protein is realized by at least two different

reactions (corresponding to the existence of a so-called futile cycle), and the corresponding

substrates required for the modification (like ATP, ADP and P) are approximately constant.

However, if one assumes unidirectional interactions, one has to be aware of the fact that the

model will probably give wrong predictions if any of the underlying assumptions is not fulfilled.

Note, that if the described process includes futile cycles it is also possible to realize any mutual

interaction, which does not fulfill the Wegscheider condition. Such a parameterization is only

valid under the defined boundary conditions, and cannot describe a system’s behavior globally

in each thermodynamically feasible situation.

3.5.2 Unidirectionality in Insulin Signaling

We have shown that theoretically a cell can realize unidirectional interactions between signaling

processes. An interesting question is whether such interactions can be found in real signaling

networks. There is, in fact, very strong evidence to suggest that unidirectional interactions are

used in signal transduction. This will be shown in the consideration of the insulin signaling

pathway.

Insulin is a hormone that regulates essential physiological processes. A well know example is

cellular glucose uptake [23, 117]. Insulin also has strong effects on metabolism [117, 110] and

regulates gene expression [96]. Cell survival and differentiation are also subjected to regulation

by insulin. Defects in the insulin signaling system may lead to obesity and insulin resistance [85,

21, 89].

The insulin receptor consists of two monomers that are constitutively dimerized [90]. Each

receptor monomer can bind one insulin molecule. Additionally, several phosphorylation sites

on the receptor exist. After insulin binding complex formation on the receptor is initiated by

autophosphorylation of various binding sites [116].

In 1986 Gherzi et al. experimentally addressed the question of whether receptor phosphory-

lation has an effect on insulin binding or not. They used purified insulin receptors from liver

cells of male Sprague-Dawley rats, and in other experiments purified insulin receptors of an hu-

man placenta. The receptors were incubated with 0.4 ng/ml radioactively labeled insulin and

2.5-1000 ng/ml unlabeled insulin. For both cell types, the experiments were performed using

both completely unphosphorylated, and in a second experiment, phosphorylated insulin recep-

tors. Gherzi et al. determined the amount of labeled receptor-bound hormone and employed a
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Scatchard analysis [118]. The resulting plots show that phosphorylated and unphoshorylated

insulin receptors have exactly the same steady state binding characteristic for insulin. They

concluded from this experimental data that receptor phosphorylation does not have any ef-

fect on insulin binding [47]. On the other hand, it is well known that insulin binding induces

receptor phosphorylation, which clearly suggests an unidirectional interaction between insulin

binding and receptor autophosphorylation.

In order to confirm these conclusions, we created steady state models of the described scenarios.

The models incorporate radioactively labeled (Im) as well as unlabeled insulin (Iu). Addition-

ally, we presume that the insulin receptor dimers provide two binding domains for insulin as

well as two binding domains that can be phosphorylated. According to the experiments per-

formed by Gherzi et al. [47], we consider two steady state scenarios. In the first scenario the

insulin receptors are completely unphosphorylated, in the second they are completely phospho-

rylated. Since the setup for both experiments neither included phosphatases and kinases nor

ATP and ADP, we can exclude the possibility of active futile cycles in these scenarios. Hence,

we developed a model in which all intra-cellular domains are constantly phosphorylated. By

taking the assumption that insulin binding is independent of receptor phosphorylation due to

unidirectionality of the interaction, it is obvious that the steady state curves for phosphory-

lated and unphosphorylated receptors are equivalent. If we additionally include insulin binding

affinities measured by Wanant et al. [134], the resulting steady state curve has the same shape

as that measured by Gherzi et al. (see Figure 3.3 A). The only parameter that had to be fitted

to the data is the concentration of insulin receptors in the experiment, since this cannot be

extracted from the data provided by Gherzi et al. [47]. Hence, the measured data is consistent

with the assumption of unidirectional process interactions between insulin binding and receptor

phosphorylation.

In order to prove that the finding by Gherzi et al. [47] really implies unidirectionality, one

has to answer the question of whether retroactive effects would have a noticeable effect on the

measured steady state curve. We can show that in most cases, even slight retroactive effects

lead to strongly varying steady state curves (see Figure 3.3 B), confirming the assumption

of unidirectionality. However, it should also be mentioned that there exist special constel-

lations of the previously introduced thermodynamic modification factors for which the steady

state curves for completely unphosphorylated and completely phosphorylated receptors are also

equivalent (data not shown). However, the experimental setup of Gherzi et al. [47] is highly

unphysiological. In a physiological environment, the found parameter constellations would not

noticeably distinguish the system from others with mutual interactions. Hence, it is very un-

likely that these are the real system parameters. We take the opinion that the assumption of

an unidirectional interaction is the much more probable hypothesis.

Thus, there is strong evidence to suggest that unidirectional interactions really occur in biolog-

ical systems, which however, cannot be proved by the available data.
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Figure 3.3: Both phosphorylated (triangles) and unphosphorylated (squares) insulin receptors puri-
fied from liver cells of male Sprague-Dawley rats were incubated with 0.4 ng/ml radioactively labeled
insulin and 2.5-1000 ng/ml unlabeled insulin. In Figure A these measurements are compared with the
simulation results of the developed steady state models taking the assumption that insulin binding
and receptor phosphorylation interact unidirectionally. The simulation results in Figure B show the
steady state behavior of the system taking the assumption that insulin binding and receptor phospho-
rylation interact mutually. The dashed line describes the phosphorylated receptors for relatively weak
retroactive effects.
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3.6 Conclusions

We have discussed the implications introduced thermodynamic constraints for complex signal-

ing networks, including scaffold proteins and receptors. These thermodynamic constraints are

given by restrictions on the kinetic parameters of reactions forming a reaction cycle, and they

can be mathematically formulated using the Wegscheider condition. Due to the combinatorial

complexity of many signal transduction networks and their immense number of possible reac-

tions, these systems comprise a huge number of cycles and are therefore highly restricted by

the Wegscheider conditions.

Based on consideration of the chemical potential of scaffold proteins or receptors, we introduced

a new formalism which allows for the direct parameterization of models of such systems with

parameters that fulfill the Wegscheider condition. Interestingly, the restrictions given by the

Wegscheider condition have a descriptive interpretation in terms of domain or process interac-

tions, which play an important role in model reduction and model modularization. According

to the Wegscheider condition, processes can either interact mutually with each other or they

can be independent. Additionally, it turns out that different tiers of interactions exist. It is

not the case that only each pair of domains can interact with each other. Indeed, interactions

between triples and higher tupels of domains or processes also exist. However, unidirectional

interactions are highly restricted. Only reaction velocities can be changed unidirectionally,

not equilibrium constants. This finding is highly problematic since a lot of available model

reduction and modularization techniques are based on the unidirectionality of process interac-

tions [16, 17, 32]. However, we have also been able to show that in reaction networks which

include futile cycles, it is possible to realize at least approximately unidirectional interactions.

Finally, we compared a steady state model of the insulin receptor with measurements made by

Gherzi et al., which indicates that phosphorylation of the insulin receptor is unidirectionally

influenced by insulin binding.
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Chapter 4

Exact Model Reduction -

A Domain-Oriented Approach

Receptor-mediated signal transduction is the subject of intense research, since it plays a crucial

role in the regulation of a variety of cellular functions. Within the last few years, a lot of mathe-

matical models have been created in order to gain a deeper understanding of these processes.

One problem all modelers of signal transduction networks have to face is combinatorial com-

plexity. Due to the occurrence of receptors and scaffold proteins with high numbers of binding

domains and binding partners the number of feasible molecular species is enormous. Complete

mechanistic models of these extremely complex reaction networks are not practical, and model

reductions are an inevitable requirement in order to get useful models. This requirement for

model reductions is further emphasized by a lack of computing power, as well as a distinct lack

of suitable analysis tools. In most real signaling networks the number of theoretically feasible

multiprotein species by far exceeds the number of proteins within a cell. Thus, it is obvious

that most of these multiprotein species will not occur in the signaling process. However, being

able to predict which species will occur and play an important role in the signaling cascade is

difficult and requires a profound knowledge about the kinetic parameters, as shown by Faeder

et al. [38]. These findings indicate that common modeling strategies are insufficient, or at least

very problematic, when attempting to mathematically describe signal transduction networks.

The first step in the development of new modeling or model reduction techniques is the de-

termination of the most relevant quantities of signal transduction networks. The goal will

be finding mathematical models which describe the dynamics of these quantities. Proba-

bly, the most popular quantities to describe the current state of receptors or scaffold proteins

are occupancy levels of certain binding domains, or their degree of phosphorylation (compare

[122, 13, 38, 16, 17, 32, 78] and others). According to Pawson and Nash [106], domains are the

fundamental elements of signal transduction rather than individual molecules. In this thesis,

we will use the terms level of occupancy or degree of phosphorylation to describe cumulated

concentrations of all multiprotein species sharing a common feature such as phosphorylation of

a certain domain. Borisov et al. refer to these quantities as macroscopic quantities or macro
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states [16], which we will adopt here. Macro-states have a number of further advantages, such

as their simple biological interpretability, or the fact that they often correspond to experimental

readouts. The aim of this thesis will be to provide new and systematic methods that facili-

tate the generation of reduced signal transduction models which approximately describe the

dynamics of these and similar macroscopic quantities.

From a system theoretical point of view the discussed occupancy levels correspond to the

output variables ~y of the dynamic model. One usually chooses measureable quantities or states

of special interest as output variables. In order to assure that their dynamics are accurately

described, our starting point will be a complete mechanistic model of first order ordinary

differential equations. However, since we assume that ~y includes all essential quantities, we are

solely interested in the systems input/output behavior. The question is whether the complete

mechanistic model is a so-called minimal realization. If a model is not a minimal realization,

it comprises uncontrollable or unobservable states, which can be eliminated without changing

the systems input/output behavior. The elimination of unobservable states in particular is

often referred to as exact lumping or exact model reduction. Note, that the term exact may be

misleading since the elimination of model equations is always linked with loss of information.

The reduction is only exact in terms of the input/output behavior which is exactly preserved

in the reduced model. In this chapter we discuss whether combinatorial reaction networks are

minimal realizations under the condition that occupancy levels are chosen as output variables.

We additionally provide methods to eliminate uncontrollable and unobservable states. Firstly,

we consider how a previously generated combinatorial reaction network can be exactly reduced

by eliminating unobservable and uncontrollable states. We refer to this approach as exact

model reduction since the number of equations is reduced. However, it is obvious that a model

reduction technique is not practical for really large combinatorial networks, comprising millions

or even billions of equations. On this account we also present a closely related alternative

approach which facilitates a direct generation of the reduced model equations. In this thesis,

this approach is called reduced order modeling. A further approximate reduction of the models

will be considered in the subsequent chapter.

4.1 Exact Model Reduction of Combinatorial Reaction

Networks

In literature, the term exact model reduction as well as exact lumping usually refers to the

elimination of unobservable states. In this thesis, the term exact model reduction will be

extended and will comprise the elimination of uncontrollable states. Note, that the elimination

of uncontrollable states, in contrast to that of unobservable ones, cannot be achieved by lumping

but by steady state assumptions. For this reason we do not use the term exact lumping.

Additionally, the elimination of uncontrollable states will only be exact if the uncontrollable

system dynamics have already decayed. In the following, we take the assumption that this

requirement is always fulfilled.
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The elimination of unobservable and uncontrollable states can be achieved by a formal dissec-

tion of the model’s state space into observable and controllable, observable but not controllable,

controllable but not observable as well as neither observable nor controllable subspaces. Such a

dissection is called Kalman decomposition [139]. The major challenge is the derivation of a suit-

able state space transformation ~z = ~φ(~x) that realizes a Kalman decomposition. As indicated

by the notation used this transformation will, in general, be nonlinear because the considered

models are nonlinear, too. One also has to be aware of the fact that the transformation cannot

be unique. Only the mentioned subspaces are uniquely determined but not the specific choice

of their coordinates. This degree of freedom can be regarded as advantage, since it facilitates

a choice of coordinates, adequate for the treated problem.

Example. In control theory one usually aims at the synthesis of a controller or observer

which suggests a certain model structure such as the controllable canonical form or the ob-

servable canonical form [70, 65]. Let us focus on observability and assume that we consider a

n-dimensional system with d unobservable states. The textbook by Alberto Isidori about non-

linear control systems [65], provides an algorithm to decompose a general nonlinear system into

observable and unobservable states. The resulting observable submodel is given in observable

canonical form. For the sake of simplicity, we consider a single output system

~̇x = ~f(~x, ~u) ~x(t0) = ~x0

y = h(~x),
(4.1)

and additionally assume that the observable subsystem is uniformly observable. This means

that the output y and its first n− d− 1 derivatives build a basis for the observable subspace.

Note, that a similar but more complex method also exists for general nonlinear systems with

multiple outputs.

According to Isidori, we use the Lie derivative of the output function h(~x) along the vector field
~f to depict the time derivatives of y. The Lie derivative is defined as

Lfh(~x) =
∂h

∂~x
~f(~x) and Lnfh(~x) = LfL

n−1
f h(~x). (4.2)

Using the Lie operator the required transformation ~φ(~x) can be written as

~φ(~x) =

h(~x), Lfh(~x), ..., Ln−d−1
f h(~x)︸ ︷︷ ︸

~φ1(~x)

, ϕ1(~x), ..., ϕn−d(~x)︸ ︷︷ ︸
~φ2(~x)


T

. (4.3)

The first n − d new coordinates correspond to the output and its first n − d − 1 derivatives.

Since the system only comprises n − d observable states Lkfh(~x) with k > n − d − 1 depends

algebraically on the output and its first n− d− 1 derivatives. The remaining d coordinates of

the transformed system have to be chosen such that the transformation ~φ is invertible, smooth
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and fulfills ~φ(0) = 0 [65]. The transformed system has the following structure

ż1

...

żn−d−1

żn−d
żn−d+1

...

żn


=



z2

...

zn−d
gn−d(z1, ..., zn−d)

gn−d+1(z1, ..., zn)
...

gn(z1, ..., zn)


y = z1

(4.4)

However, in spite of the quality of its properties for the synthesis of controllers as well as its

generality, this method is not suited for models of large reaction networks. The computational

cost to analytically calculate the higher order Lie derivatives grows extremely large with the

size of a model. The calculation for combinatorial models of signaling cascades comprising

thousands or even millions of ODEs would be infeasible. Another drawback is that, in most

cases, the transformation ~φ(~x) is not globally but only locally invertible. Furthermore, the

model states lose their biological interpretability, which is a significant disadvantage especially in

conjunction with model validation. While one usually has rough estimates regarding how most

species’ concentrations evolve over time, or at least about their lower and upper boundaries,

no such knowledge is available for higher derivatives of the output.

Exact model reduction of combinatorial reaction networks obviously requires an alternative

approach. Due to the aforementioned degrees of freedom in the choice of coordinates, the

main question is that of which choice is most suitable for combinatorial networks. The work of

Borisov et al. [16] serves as a basis for our further considerations and will be briefly reviewed

in the subsequent section.

4.1.1 Starting Point

A very promising approach to coping with combinatorial complexity has been introduced by

Borisov et al. [16]. Their work also builds the basis or starting point for the considerations

presented here. Borisov et al. showed that mechanistic models of scaffolds and receptors

can be reduced by exact lumping if all binding processes are completely independent or one

controlling domain exists, which unidirectionally influences all other binding processes. This

reduction will be further explained for a receptor R providing two distinct binding domains

which do not interact. The complete reaction network comprises four reactions

r1 = k1[L] [R(0, 0)]− k−1[R(L, 0)]

r2 = k1[L] [R(0, E)]− k−1[R(L,E)]

r3 = k2[E] [R(0, 0)]− k−2[R(0, E)]

r4 = k2[E] [R(L, 0)]− k−2[R(L,E)].

(4.5)
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These reactions can be divided into two groups, namely those that change the level of occupancy

of the L binding domain [R(L, ∗)] (r1 and r2), and those that change the level of occupancy

of the E binding domain [R(∗, E)] (r3 and r4). Interestingly, all reactions within one of these

groups are parameterized by the same kinetic parameters. Due to this special parameterization

and the simple structure of the considered mass action kinetics the sums of these reaction rates

can be written as

r1,2 = r1 + r2 = k1[L] ([R(0, 0)] + [R(0, E)])︸ ︷︷ ︸
=[R(∗,∗)]−[R(L,∗)]

−k−1 ([R(L, 0)] + [R(L,E)])︸ ︷︷ ︸
=[R(L,∗)]

r3,4 = r3 + r4 = k2[E] ([R(0, 0)] + [R(L, 0)])︸ ︷︷ ︸
=[R(∗,∗)]−[R(∗,E)]

−k−2 ([R(0, E)] + [R(L,E)])︸ ︷︷ ︸
=[R(∗,E)]

.
(4.6)

If we assume that the concentrations [L] and [E] are input signals, the reaction rates r1,2 and

r3,4 only depend on the system states [R(∗, ∗)], [R(L, ∗)] and [R(∗, E)], which correspond to the

constant overall concentration of receptor species and the two occupancy levels respectively.

Thus, an exact mathematical description of the two occupancy levels only requires the following

ordinary differential equations

d[R(L, ∗)]
dt

= k1[L] ([R(∗, ∗)]− [R(L, ∗)])− k−1[R(L, ∗)]

d[R(∗, E)]

dt
= k2[E] ([R(∗, ∗)]− [R(∗, E)])− k−2[R(∗, E)].

(4.7)

If [L] was the only input of the system, the ODE for [R(∗, E)] would be uncontrollable. Hence,

one only needs the ODE for [R(L, ∗)], whereas the concentrations of [R(∗, E)] and [E] can be

algebraically calculated from the stationary second ODE and the mass conservation relation

for E. With similar considerations it is possible to deduce reduced models for other systems.

These findings prove that combinatorial models of signal transduction networks may be reduced

by exact model reduction techniques in the case of macroscopic output variables. Additionally,

the results of Borisov et al. [16] also indicate that the occurring process interactions determine

whether, and to what extent, these models can be reduced. If one considers the discussed ex-

ample using different kinetic parameters realizing a mutual interaction between the two binding

processes, the complete mechanistic model represents a minimal realization, and no exact model

reduction is feasible. However, Borisov et al. [16] provided neither a general rule to determine

whether a reaction network can be reduced, nor did they provide a method that facilitates the

derivation of the reduced model equations for systems of arbitrary size and complexity. These

will be introduced in this thesis.

4.1.2 A Linear Hierarchically Structured Transformation

The reduced models of Borisov et al. [16] do have very nice properties. First, all occurring new

variables are biologically interpretable. They probably even have a higher biological relevance

than the original ones, since levels of occupancy directly correspond to experimental readouts.
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Figure 4.1: The three basic scenarios that will be discussed in this chapter. Figure A depicts a
receptor or scaffold protein with single protein ligands, meaning each binding domain can recruit
single proteins which do not possess further binding domains. A scaffold with multiprotein ligands
is shown in Figure B. Some of the ligands are scaffolds themselves. The last scenario additionally
includes receptor homodimerization. Heterodimerization on the other site corresponds to the scenario
depicted in Figure B.

Additionally, the model equations of the reduced model can easily be divided into different

modules. In the example discussed above the remaining two ODEs are completely decoupled

resembling the complete independence of the two considered binding processes. Perhaps the

most interesting characteristic from a mathematical point of view, is that the new coordinates

correspond to linear combinations of the original ones. This also holds true for all other ex-

amples presented by Borisov et al. [16], suggesting the assumption that an exact reduction of

combinatorial reaction networks might always be achievable by linear transformations. A linear

transformation rule is most desirable since it is much easier to handle than nonlinear ones.

In fact, we have found linear transformations that realize a Kalman decomposition for all com-

binatorial reaction networks we analyzed. Again, one can find infinitely many different linear

transformations ~z = T~x having this property. The transformation rule suggested here intro-

duces new hierarchically structured states, including the levels of occupancy which correspond

to our output variables ~y. Choosing an invertible transformation matrix T assures that the sys-

tem’s dynamics are preserved, and the original states can be retrieved from the new ones at any

time as long as none of the transformed equations are eliminated. The pattern of this linear and

hierarchically structured transformation will be considered for the three most biologically rele-

vant scenarios, namely scaffolds with single protein ligands, scaffolds with multiprotein ligands

and receptor or scaffold homodimerization. These three scenarios are depicted and elucidated

in Figure 4.1.
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4.1.3 Scaffolds with Single Protein Ligands

The first and probably most simple scenario we are going to look at are scaffolds with single

protein ligands. The term single protein ligand indicates that we only consider the multi domain

protein and its direct binding partners but no additional binding or modification processes at

these ligands. This scenario also corresponds to the one described by Borisov et al. [16] and

Conzelmann et al. [32].

For the sake of simplicity we take the assumption that each domain j can only bind one specific

effector protein Ej. However, note that the method can also be applied to systems in which

effector proteins compete for certain binding domains. In the following we also discuss one

example in which two effector proteins compete for a binding domain. Additionally, we neglect

domain phosphorylation, since phosphorylation and subsequent effector binding belongs to the

second scenario discussed below. Let us assume that the considered receptor R possesses n

binding domains. The consequent number of different receptor complexes is 2n, since each

domain can be either unoccupied (0) or occupied (1). Additionally, one has to consider the n

effector proteins that can bind to the receptor. These 2n + n individual species or micro-states

can be written as Ej(0) with j = 1, ..., n and R(i1, ..., in) with ij ∈ {0, 1}. The alternative

coordinates we propose in order to facilitate a Kalman decomposition correspond to a formally

very similar representation in which the identifier zero is replaced by an asterisk.

4.1.3.1 General Transformation Pattern

The suggested replacement of identifiers implies a linear state space transformation which can

be structured in a hierarchical way. It consists of different tiers, where each of these tiers

represents a certain level of detail. Firstly, we define the 0th tier of our transformation, which

includes the n + 1 overall concentrations of all participating proteins, namely [Ej(∗)] and

[R(∗, ..., ∗)]. Mathematically, [Ej(∗)] corresponds to the sum of all occurring species including

the effector molecule Ej, and [R(∗, ..., ∗)] to the sum of all receptor species. If the model does

not include production and degradation, these quantities will be constant over time due to

mass conservation. Consequently, the corresponding ODEs can be eliminated and replaced by

constant values. In the general case, when production and degradation is included, these are

also important macroscopic and measureable quantities of interest. The subsequent 1st tier of

our transformation comprises all n occupancy levels of the binding domains, which correspond

to the output variables of our system. According to Borisov et al. [16] the occupancy level of a

certain binding domain j is defined as the sum of all concentrations of receptor species with an

occupied binding domain j. The 2nd tier describes the occupancy levels of all pairs of domains,

corresponding to the accumulated concentration of receptor species with concurrently occupied

binding domains i and j. Following this pattern, the subsequent tiers describe all triples, all

quadruples and all higher tuples of concurrently occupied binding domains. The final nth tier

only comprises of one state, namely the state R(1, ..., 1). According to Borisov et al. [16], who

introduced the terms macro- and micro-states describing the 0th and 1st as well as the nth tier
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of our transformation, we introduce the term mesoscopic states for the remaining n− 2 tiers.

Importantly, one can also prove that this transformation is always invertible. First of all, it is

quite obvious that the number of new states is equivalent to the number of old ones, since we

simply replace the identifier zero by an asterisk. One can also show by mathematical induction

that the transformation matrix is not only quadratic but also has a triangular form. The

basic idea is that each transformed state of the ith tier corresponds to a sum of micro-states

occurring in the tiers that describe higher tuples of concurrently occupied domains plus one

further micro-state. The induction basis is given by the following considerations. While the one

and only state of the nth tier directly corresponds to the micro-state [R(1, ..., 1)], all n states of

the (n−1)th tier correspond to a sum of [R(1, ..., 1)] and one further micro-state like for example

[R(0, 1, ..., 1)] for the mesoscopic state [R(∗, 1, ..., 1)]. This facilitates the reconstruction of n

additional micro-states. All states of the (n − 2)th tier also correspond to sums composed of

already-reconstructed micro-states plus one additional still unknown micro-state. One example

is the mesoscopic state [R(∗, ∗, 1, ..., 1)], which corresponds to the sum of the already-known

micro-states [R(1, ..., 1)] from the nth tier as well as [R(0, 1, ..., 1)] and [R(1, 0, 1, ..., 1)] from the

(n− 1)th tier and the still unknown micro-state [R(0, 0, 1, ..., 1)].

In the induction step, we consider a mesoscopic state of the ith tier such as

[R(1, ..., 1︸ ︷︷ ︸
n−i

, ∗, ..., ∗︸ ︷︷ ︸
i

)].

It corresponds to a sum of micro-states, composed of only one state characterized by i zero

identifiers, and numerous micro-states characterized by a lower number of zero identifiers. All

micro-states with less than i zero identifiers are also part of other mesoscopic states belonging

to one of the (i + 1)th to nth tier. Since the sequence of asterisk and one identifiers of the

particular mesoscopic state does not affect these considerations, this is true for all states of the

ith tier.

Thus, we have shown that the pattern described always provides a linear and invertible transfor-

mation. Whether this transformation really leads to a Kalman decomposition of the considered

combinatorial reaction network will be discussed below. First of all, the transformation will be

exemplified.

4.1.3.2 Example with Three Binding Domains

Let us consider a scaffold or receptor protein R which provides three binding domains that can

recruit three different effectors. One can distinguish eleven molecular species, namely E1(0),

E2(0), E3(0), R(0, 0, 0), R(1, 0, 0), R(0, 1, 0), R(0, 0, 1), R(1, 1, 0), R(1, 0, 1), R(0, 1, 1) and

R(1, 1, 1). The complete combinatorial reaction network comprises twelve reactions, which are

parameterized by a total number of 24 kinetic parameters (see Table 4.1). In our example we do

not consider production or degradation of any component. According to the presented general

transformation pattern, the linear transformation which realizes a Kalman decomposition for

this simple example is given in Table 4.2. Note, that the structure of the transformation matrix
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Binding of E1 Binding of E2 Binding of E3

[R(0, 0, 0)]+[E1]�[R(1, 0, 0)]

[R(0, 1, 0)]+[E1]�[R(1, 1, 0)]

[R(0, 0, 1)]+[E1]�[R(1, 0, 1)]

[R(0, 1, 1)]+[E1]�[R(1, 1, 1)]

[R(0, 0, 0)]+[E2]�[R(0, 1, 0)]

[R(0, 0, 1)]+[E2]�[R(0, 1, 1)]

[R(1, 0, 0)]+[E2]�[R(1, 1, 0)]

[R(1, 0, 1)]+[E2]�[R(1, 1, 1)]

[R(0, 0, 0)]+[E3]�[R(0, 0, 1)]

[R(0, 1, 0)]+[E3]�[R(0, 1, 1)]

[R(1, 0, 0)]+[E3]�[R(1, 0, 1)]

[R(1, 1, 0)]+[E3]�[R(1, 1, 1)]

Table 4.1: Reactions for a scaffold with three binding sites. A complete mechanistic model of a scaffold
protein with three binding domains, where each domain can bind one effector protein (E1, E2, E3),
has to consider the twelve reactions shown. The kinetic parameters for each reaction can be denoted
with k+i for the association and k−i for the dissociation reaction.

[E1(∗)] = [E1(0)] + [R(1, 0, 0)] + [R(1, 1, 0)] + [R(1, 0, 1)] + [R(1, 1, 1)]

[E2(∗)] = [E2(0)] + [R(0, 1, 0)] + [R(1, 1, 0)] + [R(0, 1, 1)] + [R(1, 1, 1)]

[E3(∗)] = [E3(0)] + [R(0, 0, 1)] + [R(1, 0, 1)] + [R(0, 1, 1)] + [R(1, 1, 1)]

[R(∗, ∗, ∗)] = [R(0, 0, 0)] + [R(1, 0, 0)] + [R(0, 1, 0)] + [R(0, 0, 1)] + [R(1, 1, 0)]

+ [R(1, 0, 1)] + [R(0, 1, 1)] + [R(1, 1, 1)]

[R(1, ∗, ∗)] = [R(1, 0, 0)] + [R(1, 1, 0)] + [R(1, 0, 1)] + [R(1, 1, 1)]

[R(∗, 1, ∗)] = [R(0, 1, 0)] + [R(1, 1, 0)] + [R(0, 1, 1)] + [R(1, 1, 1)]

[R(∗, ∗, 1)] = [R(0, 0, 1)] + [R(0, 1, 1)] + [R(1, 0, 1)] + [R(1, 1, 1)]

[R(1, 1, ∗)] = [R(1, 1, 0)] + [R(1, 1, 1)]

[R(1, ∗, 1)] = [R(1, 0, 1)] + [R(1, 1, 1)]

[R(∗, 1, 1)] = [R(0, 1, 1)] + [R(1, 1, 1)]

[R(1, 1, 1)] = [R(1, 1, 1)]

Table 4.2: Hierarchical linear transformation for a receptor or scaffold protein with three binding
domains and three single protein ligands. The new states [Ej(∗)] and [R(∗, ∗, ∗)] correspond to the
overall concentrations of the 0th tier. The 1st tier comprises three levels of occupancy, the 2nd tier
three pairs of concurrently occupied domains and the last tier comprises the micro-state [R(1, 1, 1)].
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Figure 4.2: Figure A depicts a scaffold or receptor with three completely independent binding do-
mains. Due to their independence all reactions changing the occupancy level of a certain domain are
parameterized by the same kinetic parameters. In Figure B we assume that binding domain one con-
trols the other two domains as indicated by the arrows. Again, the kinetic parameters for the model
follow immediately from this assumption. As soon as binding domain one is occupied, the kinetic
properties of the docking sites two and three will change. Since binding domain one is independent of
the other binding sites, the on- and off-rate constants of this domain always stay the same.

is completely independent of the occurring process interactions. In vector representation the

transformation can be written as ~z = T~x where ~z is the vector of new transformed variables and

~x corresponds to the vector of original micro-states. The resulting transformed model equations

are

~̇z = T ~f(T−1~z, ~u). (4.8)

In this example the overall concentration [E1(∗)] is assumed to be the system input u, while

the levels of occupancy [R(1, ∗, ∗)], [R(∗, 1, ∗)] and [R(∗, ∗, 1)] are considered as output vari-

ables ~y. Since [E1(∗)] is the system input, one does not require an ODE for this quantity.

Due to the absence of production and degradation processes, the overall concentrations of E2,

E3 and R are constant and the corresponding ODEs can also be eliminated. The structure

of the remaining seven transformed model equations are highly dependent on the interactions

between the three considered binding processes. The absence of process interactions as well

as unidirectional process interactions prove to be of special interest in this context since they

facilitate the modularization of the model and in many cases its reduction as well. Although we

have already discussed that from a thermodynamic point of view, unidirectional process inter-

actions are highly restricted and, in general, occur in conjunction with domain phosphorylation

instead of effector binding, unidirectional interactions will also be considered here. The usage

of unidirectional interactions in this context, however, facilitates the treatment of all important

aspects of exact model reduction considering one simple reaction network. We consider two

different interaction patterns, which are also depicted in Figure 4.2.
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d[R(1, ∗, ∗)]
dt

= k1 ([R(∗, ∗, ∗)]− [R(1, ∗, ∗)])
`
[E1(∗)]− [R(1, ∗, ∗)]

´
− k−1[R(1, ∗, ∗)]

d[R(∗, 1, ∗)]
dt

= k2 ([R(∗, ∗, ∗)]− [R(∗, 1, ∗)])
`
[E2(∗)]− [R(∗, 1, ∗)]

´
− k−2[R(∗, 1, ∗)]

d[R(∗, ∗, 1)]

dt
= k3 ([R(∗, ∗, ∗)]− [R(∗, ∗, 1)])

`
[E3(∗)]− [R(∗, ∗, 1)]

´
− k−3[R(∗, ∗, 1)]

d[R(1, 1, ∗)]
dt

= k1 ([R(∗, 1, ∗)]− [R(1, 1, ∗)])
`
[E1(∗)]− [R(1, ∗, ∗)]

´
− k−1[R(1, 1, ∗)]

+k2 ([R(1, ∗, ∗)]− [R(1, 1, ∗)])
`
[E2(∗)]− [R(∗, 1, ∗)]

´
− k−2[R(1, 1, ∗)]

d[R(1, ∗, 1)]

dt
= k1 ([R(∗, ∗, 1)]− [R(1, ∗, 1)])

`
[E1(∗)]− [R(1, ∗, ∗)]

´
− k−1[R(1, ∗, 1)]

+k3 ([R(1, ∗, ∗)]− [R(1, ∗, 1)])
`
[E3(∗)]− [R(∗, ∗, 1)]

´
− k−3[R(1, ∗, 1)]

d[R(∗, 1, 1)]

dt
= k2 ([R(∗, ∗, 1)]− [R(∗, 1, 1)])

`
[E2(∗)]− [R(∗, 1, ∗)]

´
− k−2[R(∗, 1, 1)]

+k3 ([R(∗, 1, ∗)]− [R(∗, 1, 1)])
`
[E3(∗)]− [R(∗, ∗, 1)]

´
− k−3[R(∗, 1, 1)]

d[R(1, 1, 1)]

dt
= k1 ([R(∗, 1, 1)]− [R(1, 1, 1)])

`
[E1(∗)]− [R(1, ∗, ∗)]

´
− k−1[R(1, 1, 1)]

+k2 ([R(1, ∗, 1)]− [R(1, 1, 1)])
`
[E2(∗)]− [R(∗, 1, ∗)]

´
− k−2[R(1, 1, 1)]

+k3 ([R(1, 1, ∗)]− [R(1, 1, 1)])
`
[E3(∗)]− [R(∗, ∗, 1)]

´
− k−3[R(1, 1, 1)].

Table 4.3: Transformed model equations for a scaffold protein with independent binding domains. The
levels of occupancy which correspond to the output variables do not depend on the remaining four
states. Consequently, the system comprises three observable states. The states [R(1, ∗, ∗)], [R(1, 1, ∗)],
[R(1, ∗, 1)] and [R(1, 1, 1)] are controllable, since the input signal directly influences them.

Non-Interacting Binding Processes. Non-interacting binding processes imply that the

binding reactions for E1, for E2 and for E3 are parameterized by the same kinetic parameters

respectively. The transformed ODEs provide a very special and hierarchical structure (compare

Table 4.3). The differential equations describing the macro-states of the 1st transformation tier

are completely decoupled from the other ODEs. The states of the other two remaining tiers

only depend on themselves and on states of the preceding tier. As a result of its hierarchical

structure the Jacobian matrix of the ODE system has a lower triangular form. From this

structure one can simply deduce which states of the system are controllable and/or observable.

The state [R(1, ∗, ∗)] is the only one which is both controllable and observable. It directly

depends on the input signal [E1(∗)] and corresponds to one of the output variables. The other

macro-states depend neither on the input variable [E1(∗)] nor on any controllable state such

as the example [R(1, ∗, ∗)], which indicates that they are only observable but not controllable.

The states [R(1, 1, ∗)], [R(1, ∗, 1)] and [R(1, 1, 1)] directly depend on the input but do not

influence any of the output variables, which means that they are controllable but not observ-

able. The remaining state [R(∗, 1, 1)] is neither controllable nor observable. Thus, the given

model representation is a Kalman decomposition of the considered system, as defined above. A

minimal realization for the defined input and outputs only comprises one ODE for [R(1, ∗, ∗)]
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R(0, ∗, ∗) + E1 � R(1, ∗, ∗) k1, k−1

R(0, 0, ∗) + E2 � R(0, 1, ∗) k2, k−2

R(1, 0, ∗) + E2 � R(1, 1, ∗) k3, k−3

R(∗, 0, 0) + E3 � R(∗, 0, 1) k4, k−4

R(∗, 1, 0) + E3 � R(∗, 1, 1) k5, k−5

Table 4.4: Reaction rules describing the example depicted in Figure 4.2 B. The kinetic parameters are
also specified to the right of the rules.

and two algebraic equations that determine the constant steady state concentrations for the

uncontrollable output variables [R(∗, 1, ∗)] and [R(∗, ∗, 1)].

One Binding Process Influences the others Unidirectionally. Let us assume that the

receptor R has one extracellular binding domain that recruits a ligand. Ligand binding changes

association and dissociation constants of the other two intracellular binding processes as de-

picted in Figure 4.2 B. Since the interactions are assumed to be unidirectional, the association

of intracellular effector proteins does not affect ligand binding. This interaction pattern can be

realized by parameterizing reactions as indicated by the reaction rules in Table 4.4.

In this case the structure of the transformed model equations is different (equations see Ta-

ble 4.5). The model can be dissected into four modules. The first one only comprises the

equation for [R(1, ∗, ∗)] which is completely decoupled from all other equations. Additionally,

there exist two equally structured modules comprising the states [R(∗, 1, ∗)], [R(1, 1, ∗)] and

[R(∗, ∗, 1)], [R(1, ∗, 1)] respectively. These two modules, which describe the levels of occupancy

of the intracellular domains, do not interact with each other. However, both modules are unidi-

rectionally coupled with the state [R(1, ∗, ∗)] of the first module. This resembles the interaction

pattern of the considered system. Binding of the extracellular ligand has an unidirectional in-

fluence on the other two domains, which do not interact with each other. The remaining two

ODEs for [R(∗, 1, 1)] and [R(1, 1, 1)] form the last module, and do not influence any of the

other three mentioned modules. An accurate description of the defined output variables only

requires the first three modules. Hence, it follows that the two states [R(∗, 1, 1)] and [R(1, 1, 1)]

are unobservable and therefore have been omitted in Table 4.5. In this example the model does

not comprise uncontrollable states. Interestingly, the described state space transformation not

only modularizes the model equations but also the kinetic parameters. The module describing

the level of occupancy of the extracellular domain only comprises the parameters k1 and k−1.

The two equally structured modules, which describe the two intracellular domains, addition-

ally include either the parameters k2, k−2, k3 and k−3 or k4, k−4, k5 and k−5. This special

model structure also reveals valuable information for parameter identification. Thus, one easily

sees that measuring [R(1, ∗, ∗)] only facilitates the identification of the kinetic parameters k1

and k−1. Additionally, one does not have to consider a seven ODE model to identify these

parameters from measurement data but instead only the single ODE for [R(1, ∗, ∗)].
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d[R(1, ∗, ∗)]
dt

= k1 ([R(∗, ∗, ∗)]− [R(1, ∗, ∗)])E1 − k−1[R(1, ∗, ∗)]

d[R(∗, 1, ∗)]
dt

= k2 ([R(∗, ∗, ∗)]− [R(1, ∗, ∗)]− [R(∗, 1, ∗)] + [R(1, 1, ∗)]) [E2]− k−2 ([R(∗, 1, ∗)]− [R(1, 1, ∗)])

+k3 ([R(1, ∗, ∗)]− [R(1, 1, ∗)])E2 − k−3[R(1, 1, ∗)]
d[R(∗, ∗, 1)]

dt
= k4 ([R(∗, ∗, ∗)]− [R(1, ∗, ∗)]− [R(∗, ∗, 1)] + [R(1, ∗, 1)]) [E3]− k−4 ([R(∗, ∗, 1)]− [R(1, ∗, 1)])

+k5 ([R(1, ∗, ∗)]− [R(1, ∗, 1)])E3 − k−5[R(1, ∗, 1)]

d[R(1, 1, ∗)]
dt

= k1 ([R(∗, 1, ∗)]− [R(1, 1, ∗)]) [E1]− k−1[R(1, 1, ∗)] + k3 ([R(1, ∗, ∗)]− [R(1, 1, ∗)]) [E2]− k−3[R(1, 1, ∗)]

d[R(1, ∗, 1)]

dt
= k1 ([R(∗, ∗, 1)]− [R(1, ∗, 1)]) [E1]− k−1[R(1, ∗, 1)] + k5 ([R(1, ∗, ∗)]− [R(1, ∗, 1)]) [E3]− k−5[R(1, ∗, 1)]

Table 4.5: Transformed model equations for a scaffold protein with one controlling binding domain.
For the sake of simplicity, expressions such as [E1(∗)] − [R(1, ∗, ∗)] are replaced by the equivalent
term [E1]. Furthermore, the ODEs for [R(∗, 1, 1)] and [R(1, 1, 1)] have been neglected since they are
unobservable and rather complex.

4.1.3.3 Example Taken from T-Cell Receptor Signaling.

The following example is taken from Conzelmann et al. [32], and shows that the discussed

elimination of unobservable states facilitates significant model reductions in real signaling net-

works [32]. LAT (Linker for Activation of T cells) is a scaffold molecule that plays a pivotal

role in T cell signaling [87]. LAT has nine conserved cytoplasmatic tyrosines, of which the four

membrane-distal tyrosines (at residues 132/171/191/226 in human LAT) are essential and are

phosphorylated upon ligand binding to the T cell receptor [87]. Different signaling molecules,

such as PLCγ1, Grb2 and Gads can bind to the different residues. Grb2 recruits Sos, which in

turn activates Ras, and subsequently the Raf/MEK/ERK MAP Kinase cascade. On the other

hand, binding of PLCγ1 and Gads (bound to the adaptor SLP76 that additionally recruits

Itk), allows the activation of PLCγ1, leading to cleavage of phosphatidyl-inositol-4,5 bisphos-

phate (PIP2) and the generation of dyacilglycerol (DAG) and inositol trisphosphate IP3. DAG

activates RasGTP, which in turn activates Ras, as well as PKC, while IP3 regulates Calcium

signaling [132].

PLCγ1 binds at the Y132 tyrosine, Grb2 at Y171, Y191 and Y226, and Gads at Y171 and

Y191 (see Figure 4.3) [87]. Even by ignoring preceding domain phosphorylation the number of

different protein complexes occurring in this simple example is already 2 · 3 · 3 · 2 = 36, and the

number of reactions that have to be considered is 86. We will show how one can precisely de-

scribe the levels of occupancy without considering all 36 complexes. Recent experimental data

from LAT mutation studies indicate that the binding domains can influence one another [149].

Binding of Grb2 to Y226 appears to help the binding of Gads to LAT [149]. This effect can

be readily incorporated into the model by changing the kinetic parameters for Gads binding

if the binding site Y226 is occupied by Grb2. Transforming the model equations shows that
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Figure 4.3: The four distal tyrosine rests on LAT and the binding possibilities, according to Lindquist
et al. [87].

only ten ODEs are required to describe the system dynamics exactly. The transformed model

equations can be found in Conzelmann et al. [32]. Hence, our method is capable of reducing

signal transduction models including scaffold proteins. The modular structure of the derived

model equations also strongly facilitates model analysis as well as parameter estimation.

4.1.3.4 Generality of the Method

In the previously discussed examples it was shown that the proposed linear transformation facil-

itates the separation, and subsequently, the elimination of unobservable and/or uncontrollable

model states. However, the question remains as to whether the resulting reduced models are

minimal realizations. A general proof is difficult if not infeasible. Yet control theory provides

numerous techniques which allow a system to be checked for observability or controllability.

One possibility is checking for local observability or controllability by analyzing the linearized

model equations

~̇x = A~x+B~u with A =

(
∂ ~f(~x, ~u)

∂~x

)
~xo,~uo

, B =

(
∂ ~f(~x, ~u)

∂~u

)
~xo,~uo

, (4.9)

~y = C~x and ~x ∈ Rn, ~u ∈ Rm. (4.10)

The system is locally controllable at the operating point (~xo, ~uo) if the rank of the matrix

P =
(
B,AB,A2B, ..., An−1B

)
(4.11)

is n. However, using this analysis method one has to be aware of the fact that controllable

nonlinear systems might lose controllability at individual operating points. Since the given

criterion only facilitates local conclusions, the results of this analysis have to be interpreted very

carefully. A matrix rank of n proves that the considered system does not include any further
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globally uncontrollable states. At least all states are controllable at the chosen operating point

and therefore affect the system’s input/output behavior. If a reduced model still comprises

uncontrollable states, the rank of this matrix will be smaller than n for all considered operating

points. However, if the matrix rank is lower than n this may imply that the system is not

a minimal realization and still comprises uncontrollable states, but it is also possible that

the system has been linearized at an unpropitiously chosen operating point. Hence, it might

be necessary to repeat the test at several operating points. A matrix rank smaller than n

for numerous operating points suggests the further existence of uncontrollable states in the

nonlinear system, but it is no proof.

Accordingly, the system can be checked for observability by considering the rank of

Q =
(
C,CA,CA2, ..., CAn−1

)T
. (4.12)

Again, this criterion only provides local information about the operating point being considered.

More global conclusions require the application of nonlinear methods like those proposed by

Isidori [65].

All examples discussed in this thesis have been checked for further uncontrollable or unobserv-

able states. In all cases the reduced models proved to be minimal realizations for the chosen

input and output variables. However, an interesting border case exists, which will be discussed

here.

We reconsider the previously analyzed receptor with three binding domains where one extracel-

lular domain controls the two intracellular domains in an unidirectional manner. We presume

that the two intracellular domains are identical. Both recruit the same effector protein E and

both have exactly the same kinetic properties. Let us further assume that the system output

is the total number of E proteins bound to the receptor, which corresponds to the sum of both

occupancy levels. In this case, our proposed transformation again facilitates the elimination

of the two unobservable ODEs [R(∗, 1, 1)] and [R(1, 1, 1)] such as in the Example depicted in

Table 4.5. However, in this case the remaining ODEs can only be dissected into two modules.

Although the two identical domains do not interact with each other their ODEs are coupled due

to the fact that both recruit the same effector. The module that describes the two intracellular

domains resembles the symmetry of the considered system. Its equations form two identical

but coupled submodules

~̇x1 = ~f(~x1, ~x2, ~u) ~x1(0) = ~x0,1,

~̇x2 = ~f(~x2, ~x1, ~u) ~x2(0) = ~x0,2,

y = C (~x1 + ~x2) ,

(4.13)

each describing one of the two identical binding domains. Note, however, that the initial con-

ditions do not necessarily have to coincide. Under these assumptions the system still comprises

unobservable states if the vector field ~f fulfills the superposition principle

~f(~x1, ~x2, ~u) + ~f(~x2, ~x1, ~u) = ~f(~x1 + ~x2, ~x1 + ~x2, ~u) = ~g(~x1 + ~x2, ~u). (4.14)
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In this case the system output y and its derivatives only depend on the sum of ~x1 and ~x2

ẏ = C
(
~f(~x1, ~u) + ~f(~x2, ~u)

)
= C~g(~x1 + ~x2, ~u). (4.15)

Thus, a minimal realization of the system would be

~̇ξ = ~g(~ξ, ~u) ~ξ(0) = ~ξ0 = ~x10 + ~x20

y = C~ξ.
(4.16)

The superposition principle is fulfilled if the operator ~f is linear in ~x. In the more general case if
~f does not fulfill the superposition principle our transformation provides a minimal realization

of the system. Note, however, that even for a general operator ~f the number of equations can

be reduced if the initial conditions of both submodules are equivalent (~x10 = ~x20). Under this

condition both submodules are completely identical (~x1 = ~x2 = ~ξ) and therefore one of them

can be eliminated and the reduced module can be written as

~̇ξ = ~f(~ξ, ~ξ, ~u) = ~g(~ξ, ~u) ~ξ(0) = ~ξ0 = ~x10 = ~x20

y = 2C~ξ.
(4.17)

This reduction is not due to the elimination of unobservable states but instead results from the

restricted choice of initial conditions. From these considerations it can be seen that, apart from

the case of two identical linear subsystems, no example has been found for which the proposed

transformation does not provide a minimal realization. We have also found that under special

conditions ODE models of combinatorial reaction networks might be exactly reducible although

they do not comprise unobservable or uncontrollable states.

4.1.4 Scaffolds with Multiprotein Ligands

Many scaffold proteins or receptors do not only bind single protein ligands, but often recruit

other scaffolds, which in turn can be phosphorylated and/or bind further ligands. A good

example is the scaffold IRS which binds to the insulin receptor and can recruit numerous

other ligands such as Grb2 or PI3K. All scaffolds which can be recruited by a receptor or

another scaffold will be called multiprotein ligands. Note that in general these multiprotein

ligands can either bind single protein ligands or other multiprotein ligands. This justifies the

consideration of arbitrarily large signaling complexes. Remember, however, that we do not

consider reaction systems in which the multiprotein complex can get infinitely large (compare

Chapter 2). Heterodimerization as it occurs in the previously discussed ErbB signaling network

also fits into this category. However, homodimerization will be excluded from the following

considerations. Due to the symmetry of homodimeric complexes homodimerization has to be

handled differently and will be discussed separately. The aforementioned problem of scaffolds

with single protein ligands can be considered as a special case of what we examine here. The

main difference between these multiprotein and the previously discussed single protein ligand
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systems is the formation of long protein chains. For this reason we will initially focus on

this phenomenon and its mathematical treatment. Afterwards, we will explain how branched

multiprotein ligand systems can be handled by considering a small part of the insulin signaling

system.

Let us consider a receptor protein R which provides n binding domains. We take the assumption

that each domain i can bind an effector protein Ei
1 which in turn can recruit another effector

protein Ei
2 until finally Ei

m−1 binds Ei
m. In order to reduce the number of indices, we also

presume that each chain of effector proteins consists of m proteins. Finally, we only consider

binding processes and neglect all domain phosphorylations. Thus, each receptor domain can

be either unoccupied or occupied by a multiprotein ligand consisting of one to m proteins,

which results in (m+ 1)n distinct receptor complexes. Furthermore, the m effectors that form

the different multiprotein ligands for one single receptor domain can build m(m+1)
2

distinct

complexes. According to these examinations the total number of feasible multiprotein species

is (1 +m)n+m(m+1)
2

n. In analogy to the considerations made before, we search an equal number

of macroscopic and mesoscopic states which facilitate a Kalman decomposition of the reaction

network.

4.1.4.1 General Transformation Pattern

The concept of using levels of occupancy as new variables is problematic for the considered

multiprotein ligand systems. The term level of occupancy implies a certain hierarchy among

the signaling proteins, which is certainly given in the single protein ligand scenario where one

scaffold can bind numerous other effector proteins. It is obvious that in such reaction networks

the scaffold takes up a prominent position suggesting the need to consider its occupancy levels.

In a system that involves numerous scaffolds, a clear hierarchy is missing, and the question

arises as to which occupancy levels should be considered. In most cases, an intuitive hierarchy

will be automatically chosen. For example, in the case of insulin signaling, it is quite natural

to choose the insulin receptor as the central protein of the cascade. Due to representational

reasons, we also assume a hierarchy in our examples with R being the central protein. However,

if one considers heterodimerization of two ErbB receptors, it is not apparent which receptor

takes up a more prominent position. Another problem is that the definition of occupancy

levels for multiprotein ligand systems is not as unique as for single protein ligand systems.

The quantity [R(E1
1 , ∗, ..., ∗)], which can be interpreted as an occupancy level, describes all

receptor species whose first domain is occupied by the single protein E1
1 excluding all species

in which E1
1 has bound any further effectors or scaffolds. [R(E1

1(∗), ∗, ..., ∗)] on the other

hand represents an alternative type of occupancy level which does not exclude the previously

mentioned multiprotein complexes.

A more general transformation pattern is required which avoids the implication of molecular

hierarchy, which at the same time, is also consistent with the transformation pattern already

discussed for the single protein ligand scenario. These requirements are met by the introduction
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of so-called occurrence levels. Occurrence levels always refer to a certain molecular subcom-

plex and correspond to the sums of all multiprotein species that comprise this subcomplex.

Thus, for each individual molecular species one can define a respective occurrence level. If

these occurrence levels are used to replace the original model states, a linear and invertible

transformation is defined. The proposed transformation pattern does not imply any hierarchy

among the involved signaling proteins, however, it preserves the hierarchical structure of the

transformation matrix. The previously defined 0th tier of the transformation matrix includes

the overall concentrations of all involved signaling proteins. It corresponds to the occurrence

levels of individual proteins which are a very special type of subcomplex. The 1st tier includes

the occurrence levels of all possible two protein subcomplexes. In the case of scaffolds with sin-

gle protein ligands, this directly corresponds to the previously introduced levels of occupancy.

According to this pattern the following tiers of the transformation matrix respectively comprise

all subcomplexes consisting of three, four and more proteins. If phosphorylations occur in the

considered reaction network the phosphate groups have to be treated as additional molecules.

For example, a scaffold with one phosphorylated domain is considered to be a two-molecule

complex. The related occurrence level encompasses all molecular species that contain this

phosphorylated scaffold.

For the simplified case introduced above the new transformed states can be specified as

discussed below. The 0th tier comprises the states [R(∗, ..., ∗)] and [Ei
j(∗)], while the first

one includes the states [R(∗, ..., ∗, Ei
1(∗), ∗, ..., ∗)] as well as [Ei

j(E
i
j+1(∗))]. The occurrence

levels that refer to all three molecule complexes are [R(∗, ..., ∗, Ei
1(∗), ∗, ..., ∗, Ek

1 (∗), ∗, ..., ∗)],
[R(∗, ..., ∗, Ei

2(∗), ∗, ..., ∗)] and [Ei
j(E

i
j+2(∗))]. The subsequent tiers are defined according to this

pattern, with the last tier comprising of only the single micro-state [R(E1
m, ..., E

n
m)]. The fact

that each individual molecular species can be uniquely linked to an associated occurrence level

suggests that the transformation is invertible. This can also be proven through the use of the

mathematical induction as described for single protein ligands above.

4.1.4.2 Examples

In this section, we analyze three different systems of receptors with multiprotein ligands (see

Figure 4.4). For the sake of simplicity, the first two examples solely consider chains of signaling

proteins. The first system consists of six signaling proteins which bind consecutively to each

other. In order to provide a simple representation of the occurring complexes and the corre-

sponding occurrence levels, the protein R is considered as the central receptor which binds the

single protein ligand L and a multiprotein ligand consisting of the effectors E1 to E4. None of

these proteins are assumed to be phosphorylated. The second example only comprises four sig-

naling proteins, of which three are phosphorylated. The third system we analyze, is a simplified

model of insulin signaling which includes insulin, the insulin receptor, IRS and Shc.

Example 1: Six Signaling Proteins. We consider a receptor R that provides an extracel-

lular binding domain, which is able to recruit the ligand L. A second intracellular domain can
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Figure 4.4: Examples for multiprotein ligand systems. Figure A depicts a chain of signaling proteins
without any post-translational modifications such as phosphorylations. All bindings are assumed to
interact unidirectionally with each other (black unidirectional arrows). Figure B shows a similar sys-
tem including domain phosphorylation. Thereby, it is assumed that phosphorylation and subsequent
effector binding interact via an all-or-none reaction. Since all-or-none interactions are always bidi-
rectional they are depicted by bidirectional arrows. The last example is a small part of the insulin
signaling pathway.

R(0, ∗) + L � R(L, ∗) k1, k−1

R(0, 0) + E1(∗) � R(0, E1(∗)) k2, k−2

R(L, 0) + E1(∗) � R(L,E1(∗)) k3, k−3

E1(0, 0) + E2(∗) � E1(E2(∗)) k4, k−4

R(∗, E1) + E2(∗) � R(∗, E1(E2(∗))) k5, k−5

E2(0, 0) + E3(∗) � E2(E3(∗)) k6, k−6

E1(∗, E2) + E3(∗) � E1(∗, E3(∗)) k7, k−7

E3(0, 0) + E4 � E3(E4) k8, k−8

E2(∗, E3) + E4 � E2(∗, E4) k9, k−9

Table 4.6: Reaction rules describing the Example depicted in Figure 4.4 A. The kinetic parameters
are specified to the right of the rules.
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bind the effector protein E1, which in turn recruits E2. This chain of consecutively binding

effector proteins is continued to E4. We assume that E1 binding is unidirectionally influenced

by the recruitment of L. Equivalently, Ei binding is unidirectionally influenced by the binding

of Ei−1 to its predecessor. The resulting reaction rules for this system are given in Table 4.6.

We take the assumption that [L] is the input of the system. Determining output variables in

this example is more difficult. For systems with single protein ligands, the levels of occupancy

are chosen. These correspond to all states included in the 1st transformation tier. In accordance

to this choice, one could again take all states of the 1st tier as output variables. For multi-

protein ligands, these states correspond to the occurrence levels of all two-protein complexes.

However, for many real networks, other states might also be of interest. Let us consider the

insulin receptor which can recruit a multiprotein ligand consisting of Shc, Grb2 and SOS. In

this case the recruitment of SOS to a membrane bound signaling complex initiates the MAPK

cascade. Thus, it is important to know how many SOS proteins have bound to the receptor

complex and not how many Grb2-SOS complexes occur in the network. For this reason we will

consider two types of output variables.

Below, the output vector ~y1 represents the five occurrence levels of the 1st transformation

tier. The output vector ~y2 on the other hand includes the variables [R(L, ∗)], [R(∗, E1(∗))],
[R(∗, E2(∗))], [R(∗, E3(∗))] and [R(∗, E4)]. In order to show the large influence of process

interactions on exact model reduction, we additionally consider the case that k8 = k9 and k−8 =

k−9. This assumption implies that E4 binding is completely independent of all other binding

processes. Note that due to the thermodynamic constraints of reaction networks discussed

above the aforementioned scenarios are, in reality, not very likely to occur. However, they help

to show the advantages the proposed transformation pattern provides. Since the transformation

pattern is independent of both the kinetic system properties and the chosen output variables, all

mentioned cases can be handled using the same transformation. It consists of six tiers that are

shown in Table 4.7. Due to the absence of protein production and degradation, the six states of

the 0th tier remain constant. Thus, these six ODEs can be eliminated in the considered example.

First, we will discuss the case that E4 binding is unidirectionally influenced by E3 binding. In

this case, our transformation does not allow any exact reduction of the model, for either of the

output variables ~y1 or ~y2. From the linearized model equations one can additionally deduce

that all states are observable and controllable. Interestingly, the transformed model equations

can be dissected into five modules, which are all unidirectionally coupled. This model structure

directly resembles the interaction pattern between the five considered binding processes. In

fact each of the modules describes one of these five processes. However, the modules differ in

size and structure. The first module, which describes the recruitment of L to the receptor, only

consists of one differential equation. The second, third, fourth and fifth modules comprise of

two, three, four and five states respectively. Another nice property of the transformed system is

the concurrently achieved modularization of the kinetic parameters. The L binding module only

contains the parameters k1 and k−1. In addition to k1 and k−1, the second module comprises all

parameters that describe binding of E1 to R but no others. This special hierarchical structure

can also be found by considering the other three modules, and is very advantageous in parameter
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[R(∗, ∗)] =[R(0, 0)] + [R(0, E1)] + [R(0, E2)] + [R(0, E3)] + [R(0, E4)] + [R(L, 0)] + [R(L,E1)] + [R(L,E2)]

+ [R(L,E3)] + [R(L,E4)]

[E1(∗)] =[E1(0)] + [E1(E2)] + [E1(E3)] + [E1(E4)] + [R(0, E1)] + [R(0, E2)] + [R(0, E3)] + [R(0, E4)]

+ [R(L,E1)] + [R(L,E2)] + [R(L,E3)] + [R(L,E4)]

[E2(∗)] =[E1(E2)] + [E1(E3)] + [E1(E4)] + [E2(0)] + [E2(E3)] + [E2(E4)] + [R(0, E2)] + [R(0, E3)]

+ [R(0, E4)] + [R(L,E2)] + [R(L,E3)] + [R(L,E4)]

[E3(∗)] =[E1(E3)] + [E1(E4)] + [E2(E3)] + [E2(E4)] + [E3(0)] + [E3(E4)] + [R(0, E3)] + [R(0, E4)]

+ [R(L,E3)] + [R(L,E4)]

[E4(∗)] =[E1(E4)] + [E2(E4)] + [E3(E4)] + [E4(0)] + [R(0, E4)] + [R(L,E4)]

[R(L, ∗)] =[R(L, 0)] + [R(L,E1)] + [R(L,E2)] + [R(L,E3)] + [R(L,E4)]

[R(∗, E1(∗))] =[R(0, E1)] + [R(0, E2)] + [R(0, E3)] + [R(0, E4)] + [R(L,E1)] + [R(L,E2)] + [R(L,E3)] + [R(L,E4)]

[E1(E2(∗)] =[E1(E2)] + [E1(E3)] + [E1(E4)] + [R(0, E2)] + [R(0, E3)] + [R(0, E4)] + [R(L,E2)]

+ [R(L,E3)] + [R(L,E4)]

[E2(E3(∗))] =[E1(E3)] + [E1(E4)] + [E2(E3)] + [E2(E4)] + [R(0, E3)] + [R(0, E4)] + [R(L,E3)] + [R(L,E4)]

[E3(E4(∗))] =[E1(E4)] + [E2(E4)] + [E3(E4)] + [R(0, E4)] + [R(L,E4)]

[R(L,E1(∗))] =[R(L,E1)] + [R(L,E2)] + [R(L,E3)] + [R(L,E4)]

[R(∗, E2(∗))] =[R(0, E2)] + [R(0, E3)] + [R(0, E4)] + [R(L,E2)] + [R(L,E3)] + [R(L,E4)]

[E1(E3(∗)] =[E1(E3)] + [E1(E4)] + [R(0, E3)] + [R(0, E4)] + [R(L,E3)] + [R(L,E4)]

[E2(E4(∗))] =[E1(E4)] + [E2(E4)] + [R(0, E4)] + [R(L,E4)]

[R(L,E2(∗))] =[R(L,E2)] + [R(L,E3)] + [R(L,E4)]

[R(∗, E3(∗))] =[R(0, E3)] + [R(0, E4)] + [R(L,E3)] + [R(L,E4)]

[E1(E4(∗)] =[E1(E4)] + [R(0, E4)] + [R(L,E4)]

[R(L,E3(∗))] =[R(L,E3)] + [R(L,E4)]

[R(∗, E4(∗))] =[R(0, E4)] + [R(L,E4)]

[R(L,E4(∗))] =[R(L,E4)]

Table 4.7: Hierarchical transformation that realizes a Kalman decomposition for the example system
depicted in Figure 4.4 A. The new states correspond to the occurrence levels of different subcomplexes.
The transformation can be structured in different tiers. The previously discussed case of single protein
ligand systems can be considered as border cases of the underlying transformation pattern. The
transformation is independent of the chosen output variables as well as the kinetic properties of the
reaction network. However, a different choice of output variables may lead to a higher or lower
number of observable states. The same holds true for varying kinetic parameters. For given input and
output signals, the kinetic properties determine whether states are observable and/or controllable.
Furthermore, the kinetic parameters also define whether the model equations can be modularized or
not. In the considered example, the system does not comprise unobservable states and can be divided
into five modules if k8 6= k9 and k−8 6= k−9. If k8 = k9 and k−8 = k−9, the system can be reduced to
ten ODEs.
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R(0, ∗) + L � R(L, ∗) k1, k−1

R(0, 0) � R(0, P ) k2, k−2

R(L, 0) � R(L, P ) k3, k−3

R(∗, P ) + E1(∗) � R(∗, E1(∗)) k4, k−4

E1(0, 0) � E1(0, P ) k5, k−5

R(∗, E1) � R(∗, E1(P )) k6, k−6

E1(∗, P ) + E2 � E1(∗, E2) k7, k−7

Table 4.8: Reaction rules describing the Example depicted in Figure 4.4 B. The kinetic parameters
are specified to the right of the rules.

estimation. Measurements of the transient behavior of either states ~y1 or ~y2 facilitate a stepwise

identification of the kinetic model parameters, module by module. A stepwise procedure is

computationally much less costly than the concurrent identification of all parameters.

Taking the assumption that the association of E3 and E4 is independent of all other occurring

binding processes, the structure of the fifth module changes. The state E3(E4(∗)) is not con-

trollable any more, since the respective binding process can neither be directly nor indirectly

influenced by changes in the L concentration. If ~y1 is the output vector of the system, the

output variable E3(E4(∗)) is determined by the steady state equation of the respective ODE.

The remaining four states of the fifth module are not observable and can simply be omitted.

Thus, the model can be exactly reduced to ten ODEs. The situation changes if one considers

the output vector ~y2. The choice of different output variables does not affect the controllability

of a system. Thus, the state E3(E4(∗)) is still uncontrollable and the respective ODE can be

replaced by its steady state equation. However, all model states are observable in this case and

as a result no further equation can be eliminated. An exactly reduced model would, in this

case, comprise fourteen ODEs.

Example 2: Domain Phosphorylation. As a second example we consider a receptor R

which again provides an extracellular binding domain, which can recruit the ligand L. In

contrast to the previously considered example, the receptor’s intracellular domain has to be

phosphorylated in order to bind the effector protein E1. Phosphorylation is considered to be

a necessary precondition for E1 binding, while bound E1 preserves the receptor domain from

dephosphorylation due to steric reasons. E1 also has to be phosphorylated in order to recruit

E2, which prevents dephosphorylation of E1. In this case, we do not consider binding of further

effector proteins. One presumption we make is that receptor phosphorylation is unidirectionally

influenced by recruitment of L. Equivalently E1 phosphorylation is unidirectionally influenced

by E1 binding to the receptor R. The interactions between receptor phosphorylation and E1

binding as well as between E1 phosphorylation and E2 recruitment are all-or-none interactions.

The reaction rules for this system are given in Table 4.8.

Again the concentration [L] is considered as the input of the system. According to our con-
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[R(∗, ∗)] =[R(0, 0)] + [R(0, P )] + [R(0, E1)] + [R(0, E1(P ))] + [R(0, E2)] + [R(L, 0)] + [R(L,P )]

+ [R(L,E1)] + [R(L,E1(P ))] + [R(L,E2)]

[E1(∗)] =[E1(0)] + [E1(P )] + [E1(E2)] + [R(0, E1)] + [R(0, E1(P ))] + [R(0, E2)] + [R(L,E1)]

+ [R(L,E1(P ))] + [R(L,E2)]

[E2(∗)] =[E1(E2)] + [E2(0)] + [R(0, E2)] + [R(L,E2)]

[R(L, ∗)] =[R(L, 0)] + [R(L,P )] + [R(L,E1)] + [R(L,E1(P ))] + [R(L,E2)]

[R(∗, P (∗))] =[R(0, P )] + [R(0, E1)] + [R(0, E1(P ))] + [R(0, E2)] + [R(L,P )] + [R(L,E1)] + [R(L,E1(P ))] + [R(L,E2)]

[E1(P (∗)] =[E1(P )] + [E1(E2)] + [R(0, E1(P ))] + [R(0, E2)] + [R(L,E1(P ))] + [R(L,E2)]

[R(L,P (∗))] =[R(L,P )] + [R(L,E1)] + [R(L,E1(P ))] + [R(L,E2)]

[R(∗, E1(∗))] =[R(0, E1)] + [R(0, E1(P ))] + [R(0, E2)] + [R(L,E1)] + [R(L,E1(P ))] + [R(L,E2)]

[E1(E2(∗)] =[E1(E2)] + [R(0, E2)] + [R(L,E2)]

[R(L,E1(∗))] =[R(L,E1)] + [R(L,E1(P ))] + [R(L,E2)]

[R(∗, E1(P (∗)))] =[R(0, E1(P ))] + [R(0, E2)] + [R(L,E1(P ))] + [R(L,E2)]

[R(L,E1(P (∗)))] =[R(L,E1(P ))] + [R(L,E2)]

[R(∗, E2(∗))] =[R(0, E2)] + [R(L,E2)]

[R(L,E2(∗))] =[R(L,E2)]

Table 4.9: Hierarchical transformation for the example system depicted in Figure 4.4 B. The new states
correspond to the occurrence levels of different subcomplexes. The transformation can be structured
in different tiers. The previously discussed case of single protein ligand systems can be considered as
border case of the underlying transformation pattern.

siderations in the previous example the states [R(L, ∗)], [R(∗, P )], [R(∗, E1)], [R(∗, E1(P ))]

and [R(∗, E2)] are chosen as output variables ~y. Since the system also comprises six different

processes, the transformation pattern again consists of six different tiers that are depicted in

Table 4.9. Due to the absence of protein production and degradation, the three states of the

0th tier remain constant. Thus, these three ODEs can be eliminated.

In this example, the transformed model equations can be dissected into three unidirectionally

coupled modules including all five output variables, and one additional module comprising the

two unobservable states [R(L,E1(P ))] and [R(L,E2)]. All model states are controllable. Thus,

this example shows that the existence of all-or-none interactions facilitate significant model

reductions. Although the considered system comprises the same number of molecular processes

than the previously discussed one, even the complete mechanistic model consists of a lower

number of ODEs. Additionally, the system comprises two unobservable states, which allows

for further a model reduction. Consequently, a minimal realization of the reaction system for

the defined input and outputs consists of nine ODEs.
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Figure 4.5: The considered part of the insulin signaling network depicted on the left side is translated
into ordinary differential equations with the state vector ~x. According to the introduced transformation
pattern, these model equations are transformed to the new state variables ~z. Three ODEs can be
eliminated due to mass conservation relations for the proteins IR, IRS and Shc. A huge number of 59
ODEs (~z2) are unobservable and can be neglected. The remaining 15 ODEs can be divided into six
modules as shown on the right. Each of the considered binding and phosphorylation processes can be
uniquely assigned to one of these modules. This correlation is denoted by the numbers 1− 6 that can
be found in the left drawing and the schematic figure of the modules.

Example 3: The Insulin Signaling Pathway. As a more general example of branched

systems, we will analyze a small part of the insulin signaling pathway. We consider the in-

sulin receptor IR and four of its binding domains. For the sake of simplicity we only consider

one extracellular ligand domain recruiting insulin. Additionally, we include three intracellular

binding domains, which are all phosphorylated after ligand binding. According to the results

of Gherzi et al. [47] (discussed in Chapter 3), we assume that IR phosphorylation is unidirec-

tionally influenced by insulin binding. Furthermore, the recruitment of Shc and IRS is included

to the model, as well as the subsequent phosphorylation of two additional IRS domains. In

analogy to the phosphorylation of IR, we also presume that IRS binding to IR unidirection-

ally influences the phosphorylation of IRS. The system is depicted in Figure 4.5. A complete

mechanistic model of this reaction network consists of 77 different molecular species, namely

72 receptor complexes, four different IRS species and the single effector protein Shc. Due

to this complexity we refrain from quoting the reaction rules and the state space transfor-

mation. However, we will give a short summary regarding the transformed system’s proper-

ties. The considered system output comprises eight occurrence levels, namely [IR(Ins, ∗, ∗, ∗)],
[IR(∗, P, ∗, ∗)], [IR(∗, ∗, P (∗), ∗)], [IR(∗, ∗, Shc, ∗)], [IR(∗, ∗, ∗, P (∗)], [IR(∗, ∗, ∗, IRS(∗, ∗))],
[IR(∗, ∗, ∗, IRS(P, ∗))] and [IR(∗, ∗, ∗, IRS(∗, P ))]. Firstly, the neglect of production and

degradation processes facilitates the elimination of three ODEs due to mass conservation rela-

tions for the proteins IR, Shc and IRS. A huge number of 59 states are unobservable and can be

omitted. The remaining 15 ODEs can again be dissected into six unidirectionally coupled mod-

ules (compare Figure 4.5). Each of the considered binding and phosphorylation processes can

be uniquely assigned to one of the modules. Furthermore, the kinetic parameters are also mo-
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dularized. Each module only comprises kinetic parameters which are assigned to the processes

described in this module or processes which directly or indirectly influence them. If we assume

that measurement data is available for all considered output variables, the model parameters

can be estimated step by step and module by module. Thus, the most sophisticated param-

eter estimation task in this example is the identification of six unknown parameters in a four

ODE system. Altogether one can summarize that the described transformation realizes model

modularizations and reductions facilitating the generation of practically manageable models.

4.1.5 Homodimerization of Receptors and Scaffolds

Homodimerization of receptors and scaffold proteins is quite common in signal transduction

networks. For instance, homodimers occur in the ErbB signaling network as described above.

Additionally, there exist numerous other receptors such as vascular endothelial growth factor

(VEGF) or platelet derived growth factor (PDGF) receptors which form homodimers [141].

Homodimerization is additionally characterized by a number of unique features having a strong

impact on model reduction, which justifies a separate and detailed consideration. Due to

their symmetric configuration, the number of distinguishable homodimers is much lower than

in equally large heterodimers. If one considers a receptor monomer which forms n distinct

monomeric multiprotein complexes, there exist n(n+1)
2

feasible homodimers. Heterodimeriza-

tion of two different receptors, which both form n monomeric species, leads to n2 feasible

heterodimers. However, the indistinguishability of symmetric receptor dimers not only has the

positive effect of reducing the number of ODEs compared to heterodimers, but also leads to

non-intuitive kinetic system properties, which will be discussed below.

We consider a receptor R with n distinct binding domains. Furthermore, we presume that

R can form homodimers. These homodimers will be depicted as R(∗, ..., ∗).R(∗, ..., ∗). Due

to the symmetry of the dimers, one cannot distinguish between R(L, 0, ..., 0).R(0, ..., 0) and

R(0, ..., 0).R(L, 0, ..., 0). Hence, we come to an agreement where the receptor with more occu-

pied domains will always be mentioned first.

4.1.5.1 Kinetic Properties

Dimerization is a molecular process similar to ligand binding, and dimerization can influence,

or can be influenced, by all other processes within the network. The most simple theoretic

case one can analyze is the case where receptor homodimerization is completely independent

of all other processes. In order to achieve this independence, it is necessary to parameterize

all dimerization reactions adequately. This requires one to distinguish between the formation

of mirror symmetric dimers and non-mirror symmetric dimers. The reason for this discrimi-

nation is that reactions describing the formation of non-mirror symmetric dimers have to be
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parameterized by a twofold higher kon value than those of mirror symmetric dimers.

R(X1, ..., Xn) +R(X1, ..., Xn)
k1
�
k−1

R(X1, ..., Xn).R(X1, ..., Xn)

R(X1, ..., Xn) +R(Y1, ..., Yn)
2k1
�
k−1

R(X1, ..., Xn).R(Y1, ..., Yn)
(4.18)

The reason for this duplication of the kon value can be explained considering the reaction

rates. Let us take the assumption that the two concentrations [R(X1, ..., Xn)] and [R(Y1, ..., Yn)]

are equal. The rates for the considered two reactions comprise the terms [R(X1, ..., Xn)]2

and [R(X1, ..., Xn)] · [R(Y1, ..., Yn)] respectively. According to the collision theory for chemical

reactions these terms are measures for the likelihood of a collision of two reactants in the system.

Due to our assumption that the concentrations of both species are equal, the evaluation of both

terms leads to exactly the same numerical result. However, the likelihood for the formation

of a non-mirror symmetric dimer is two times higher than for mirror symmetric ones. This

becomes apparent if one considers the collision probability for both cases. In the second case

the number of molecules which may collide are two times higher than in the first scenario.

Not only does the dimerization process itself (and therefore the dimerization reactions) have

to be treated differently. Due to the symmetry of homodimers, one also has to be careful in

parameterizing ligand binding and modification reactions. Let us again assume that binding

of the ligand L is completely independent of all other processes. Note that this is a theo-

retic assumption in order to illustrate the occurring problems regarding the most simplistic

scenario. Furthermore, let k1 and k−1 be the kinetic parameters describing the association and

dissociation of L with a receptor monomer

R(0, ∗, ..., ∗) + L
k1
�
k−1

R(L, ∗, ..., ∗). (4.19)

Here, one must again distinguish between two cases, namely binding of L to a completely unli-

ganded dimer, and binding to a single liganded one. According to our assumption dimerization

shall not have any effect on ligand binding. Hence, each receptor molecule of a dimer behaves

exactly the same way as a monomeric receptor does, which indicates that an unliganded dimer

has a two times higher kon value than a single-liganded, or a monomeric one. The same ratio-

nale also implies that the koff value for a double liganded dimer is two times higher than it is

for a single liganded one. Thus, the reactions have to be parameterized as follows

R(0, ∗, ..., ∗).R(0, ∗, ..., ∗) + L
2k1
�
k−1

R(L, ∗, ..., ∗).R(0, ∗, ..., ∗) (4.20)

R(L, ∗, ..., ∗).R(0, ∗, ..., ∗) + L
k1
�

2k−1

R(L, ∗, ..., ∗).R(L, ∗, ..., ∗). (4.21)

The realization of process interactions either between two binding or modification processes

or between dimerization and some other processes is straight forward. If dimerization has

an influence on L binding, Reaction 4.19 will be parameterized by k1 and k−1, while the

parameters k2 and k−2 will be used for the Reactions 4.20 and 4.21. However, the two times
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higher association constant of Reaction 4.20 and the two times higher dissociation constant

of Reaction 4.21 still has to be accounted for. The negligence of these additional factors

corresponds to a mutual interaction between the two ligand binding processes within a dimer.

4.1.5.2 General Transformation Pattern

The general transformation for systems that include homodimerization follows exactly the same
pattern as introduced for scaffolds with multiprotein ligands. It is hierarchically structured
where the different tiers of the transformation comprise occurrence levels of one, two, three
or higher molecule complexes. However, one has to be careful, since some of the species
concentrations have to be counted twice. Let us consider the occurrence level of a receptor
ligand complex, which we will depict as [R(L, ∗, ..., ∗).∗]. This accumulated quantity comprises
monomeric, as well as dimeric species, namely [R(L, ∗, ..., ∗)], [R(L, ∗, ..., ∗).R(0, ∗, ..., ∗)] and
[R(L, ∗, ..., ∗).R(L, ∗, ..., ∗)]. Observe that the species R(L, ∗, ..., ∗).R(L, ∗, ..., ∗) include two re-
ceptor ligand complexes and therefore have to be counted twice. Consequently, the considered
occurrence level is defined as

[R(L, ∗, ..., ∗).∗] = [R(L, ∗, ..., ∗)] + [R(L, ∗, ..., ∗).R(0, ∗, ..., ∗)] + 2 [R(L, ∗, ..., ∗).R(L, ∗, ..., ∗)]. (4.22)

The invertibility of the transformation matrix suggested here can again be proved using mathe-

matical induction.

4.1.5.3 Example

As an example we will analyze homodimerization of the EGFR receptor which, for this exam-

ple, will be called R. In addition to the dimerization process we also consider EGF binding

and receptor phosphorylation. EGF binding and receptor dimerization are assumed to inter-

act mutually. This assumption is in accordance with the previously discussed thermodynamic

constraints, and also fits with experimental data presented by Odaka et al. and Lemmon et

al. [99, 82]. Furthermore, we assume that dimerization influences receptor phosphorylation,

since the receptors of a dimer phosphorylate each other mutually. In analogy to the experi-

mental results of Gherzi et al. [47] for insulin signaling, this interaction is expected to be an

unidirectional one. The reaction rules which describe this system are given in Table 4.10. The

reaction system comprises 14 receptor species and the ligand EGF. The transformation of these

states according to the proposed general transformation pattern is shown in Table 4.11. Since

the concentration of extracellular EGF is considered as model input the transformation does not

include the overall concentration of EGF. The best choice of output variables in this example

are the three occurrence levels of the 1st transformation tier, namely [R(EGF, ∗).∗], [R(∗, P ).∗]
and [R(∗, ∗).R(∗, ∗)]. These outputs correspond to the total number of liganded EGF bind-

ing domains, the total number of phosphorylated intracellular receptor domains as well as the

number of receptor dimers. Due to the absence of production and degradation, the overall con-

centration of EGFR stays constant and the respective ODE can be eliminated. The remaining

13 transformed model equations can be dissected into three modules, with the first module con-

sisting of four ODEs and describing EGF binding as well as receptor homodimerization. This
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R(0, ∗) + EGF � R(EGF, ∗) k1, k−1

R(0, ∗).R(0, ∗) + EGF � R(EGF, ∗).R(0, ∗) 2k2, k−2

R(EGF, ∗).R(0, ∗) + EGF � R(EGF, ∗).R(EGF, ∗) k2, 2k−2

R(0, X1) + R(0, X1) � R(0, X1).R(0, X1) k3, k−3

R(0, X1) + R(0, X2) � R(0, X1).R(0, X2) 2k3, k−3

R(EGF,X1) + R(0, X1) � R(EGF,X1).R(0, X1) k4, k−4

R(EGF,X1) + R(0, X2) � R(EGF,X1).R(0, X2) 2k4, k−4

R(EGF,X1) + R(EGF,X1) � R(EGF,X1).R(EGF,X1) k5, k−5

R(EGF,X1) + R(EGF,X2) � R(EGF,X1).R(EGF,X2) 2k5, k−5

R(∗, 0) � R(∗, P ) k6, k−6

R(∗, 0).R(∗, 0) � R(∗, P ).R(∗, 0) 2k7, k−7

R(∗, P ).R(∗, 0) � R(∗, P ).R(∗, P ) k7, 2k−7

Table 4.10: Reaction rules for the considered example of EGFR dimerization. Here, the identifiers Xn

also indicate that the related domains can be in various states in the same way that the identifier ∗
does. However, all domains with the identifier Xn within one rule have to be in the same state. If two
different identifiers Xi and Xj occur within one rule the respective domains are not allowed to be in
the same state.

first module comprises the model states [R(EGF, ∗).∗], [R(∗, ∗).R(∗, ∗)], [R(EGF, ∗).R(∗, ∗)]
and [R(EGF, ∗).R(EGF, ∗)]. The second module describes receptor phosphorylation and con-

tains six ODEs, while the remaining three ODEs for [R(∗, P ).R(∗.P )], [R(EGF,P ).R(∗, P )]

and [R(EGF,P ).R(EGF,P )] form the third unobservable module. Since all states are control-

lable the model can be reduced by omitting the three unobservable states. This reduced model

then comprises ten ODEs.

4.1.6 Conclusions

The introduced exact model reduction approach is based on the work of Borisov et al. [16, 17],

who showed that combinatorial reaction networks are exactly reducible under certain condi-

tions. From a system theoretical point of view exact reducibility corresponds to the existence of

unobservable or uncontrollable system dynamics. The separation of observable and unobserv-

able, and controllable and uncontrollable states can always be accomplished by a state space

transformation. Interestingly, such a separation can be achieved by a linear transformation in

the case of combinatorial reaction networks. We considered three important general scenarios,

namely scaffolds with single protein ligands, scaffolds with multiprotein ligands and scaffold

or receptor homodimerization. General transformation patterns for all these scenarios have

been introduced and extensively discussed by considering numerous examples. The performed

examinations indicate that most models of combinatorial reaction networks can be significantly

reduced by elimination of unobservable and uncontrollable states. However, it is important to

state that the described procedure alone is not an adequate solution for the problem of combi-
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[R(∗, ∗).∗] =[R(0, 0)] + [R(EGF, 0)] + [R(0, P )] + [R(EGF,P )] + 2 [R(0, 0).R(0, 0)]

+ 2 [R(EGF, 0).R(0, 0)] + 2 [R(0, P ).R(0, 0)] + 2 [R(EGF, 0).R(EGF, 0)]

+ 2 [R(EGF,P ).R(0, 0)] + 2 [R(EGF, 0).R(0, P )] + 2 [R(0, P ).R(0, P )]

+ 2 [R(EGF,P ).R(EGF, 0)] + 2 [R(EGF,P ).R(0, P )] + 2 [R(EGF,P ).R(EGF,P )]

[R(EGF, ∗).∗] =[R(EGF, 0)] + [R(EGF,P )] + [R(EGF, 0).R(0, 0)] + 2 [R(EGF, 0).R(EGF, 0)]

+ [R(EGF,P ).R(0, 0)] + [R(EGF, 0).R(0, P )] + 2 [R(EGF,P ).R(EGF, 0)]

+ [R(EGF,P ).R(0, P )] + 2 [R(EGF,P ).R(EGF,P )]

[R(∗, ∗).R(∗, ∗)] =[R(0, 0).R(0, 0)] + [R(EGF, 0).R(0, 0)] + [R(0, P ).R(0, 0)] + [R(EGF, 0).R(EGF, 0)]

+ [R(EGF,P ).R(0, 0)] + [R(EGF, 0).R(0, P )] + [R(0, P ).R(0, P )]

+ [R(EGF,P ).R(EGF, 0)] + [R(EGF,P ).R(0, P )] + [R(EGF,P ).R(EGF,P )]

[R(∗, P ).∗] =[R(0, P )] + [R(EGF,P )] + [R(0, P ).R(0, 0)] + [R(EGF,P ).R(0, 0)] + [R(EGF, 0).R(0, P )]

+ 2 [R(0, P ).R(0, P )] + [R(EGF,P ).R(EGF, 0)] + 2 [R(EGF,P ).R(0, P )]

+ 2 [R(EGF,P ).R(EGF,P )]

[R(EGF,P ).∗] =[R(EGF,P )] + [R(EGF,P ).R(0, 0)] + [R(EGF,P ).R(EGF, 0)] + [R(EGF,P ).R(0, P )]

+ 2 [R(EGF,P ).R(EGF,P )]

[R(EGF, ∗).R(∗, ∗)] =[R(EGF, 0).R(0, 0)] + 2 [R(EGF, 0).R(EGF, 0)] + [R(EGF,P ).R(0, 0)]

+ [R(EGF, 0).R(0, P )] + 2 [R(EGF,P ).R(EGF, 0)] + [R(EGF,P ).R(0, P )]

+ 2 [R(EGF,P ).R(EGF,P )]

[R(∗, P ).∗] =[R(0, P ).R(0, 0)] + [R(EGF,P ).R(0, 0)] + [R(EGF, 0).R(0, P )] + 2 [R(0, P ).R(0, P )]

+ [R(EGF,P ).R(EGF, 0)] + 2 [R(EGF,P ).R(0, P )] + 2 [R(EGF,P ).R(EGF,P )]

[R(EGF, ∗).R(EGF, ∗)] =[R(EGF, 0).R(EGF, 0)] + [R(EGF,P ).R(EGF, 0)] + [R(EGF,P ).R(EGF,P )]

[R(∗, P ).R(∗, P )] =[R(0, P ).R(0, P )] + [R(EGF,P ).R(0, P )] + [R(EGF,P ).R(EGF,P )]

[R(EGF,P ).R(∗, ∗)] =[R(EGF,P ).R(0, 0)] + [R(EGF,P ).R(EGF, 0)] + [R(EGF,P ).R(0, P )]

+ 2 [R(EGF,P ).R(EGF,P )]

[R(EGF, ∗).R(∗, P )] =[R(EGF, 0).R(0, P )] + [R(EGF,P ).R(EGF, 0)] + [R(EGF,P ).R(0, P )]

+ 2 [R(EGF,P ).R(EGF,P )]

[R(EGF,P ).R(EGF, ∗)] =[R(EGF,P ).R(EGF, 0)] + 2 [R(EGF,P ).R(EGF,P )]

[R(EGF,P ).R(∗, P )] =[R(EGF,P ).R(0, P )] + 2 [R(EGF,P ).R(EGF,P )]

[R(EGF,P ).R(EGF,P )] =[R(EGF,P ).R(EGF,P )]

Table 4.11: Hierarchical transformation for the example system. The new states also correspond
to the occurrence levels of different subcomplexes. Due to the symmetric structure of the receptor
dimers some species have to be counted twice. For instance the macroscopic state [R(EGF, ∗).∗] is
an aggregation of all species that comprise a subcomplex consisting of one receptor and one EGF
molecule. The two micro-states [R(EGF, 0).R(0, 0)] and [R(EGF, 0).R(EGF, 0)] obviously fit into
this pattern. However, the state [R(EGF, 0).R(EGF, 0)] has to be counted twice since the regarded
subcomplex also occurs twice in this species. Furthermore, the transformation can be structured in
six different tiers.
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natorial complexity. Real signaling cascades often comprise millions or even billions of species

and reactions. The requirement of firstly generating a complete mechanistic model, which is

subsequently reduced, impedes the application of the discussed methods in many cases. This

problem will be discussed in the following section.

4.2 Reduced Order Modeling of Combinatorial Reaction

Networks

In the previous section, we discussed a general and systematic method which allows for sig-

nificant and exact model reductions of combinatorial reaction networks. Now, an alternative

approach will be considered which facilitates the direct generation of the exactly reduced model

equations. This reduced order modeling approach is based on the close relations between con-

trollability and observability of a model and the process interactions of the examined system.

These correlations will be discussed below.

4.2.1 Controllability, Observability and Process Interactions

From the previously discussed examples, it can be seen that the number of observable and

controllable states highly depends on the occurring process interactions. The question is that

of whether the qualitative information about process interactions can reveal clues about the ob-

servability and controllability of a reaction network, or maybe even facilitate a direct translation

to reduced model equations. Controllability and observability as well as process interactions

provide information about interactions within the considered system, however, at different levels

of abstraction.

Controllability and observability are properties of an ODE system, and both of them charac-

terize the ODE couplings with respect to the system inputs and outputs. According to the

definitions given in Chapter 2 a state is called observable if its dynamic behavior can be recon-

structed or recalculated by measuring the output variables. Hence, all observable states must

exert a certain well-defined influence on at least one of the output variables. On the other hand

a state is said to be controllable, if it can be influenced either directly or indirectly by one of

the system’s input variables.

Process interactions describe the system at a different level of abstraction. Instead of ODEs one

considers binding and modification processes. The analyses performed in the previous section

clearly show that process interactions are closely related to ODE couplings. This can be seen

from the fact that ODE models of unidirectionally interacting processes can be divided into

unidirectionally coupled ODE modules.

Controllability and observability are closely related to the determination of input and output

variables respectively. In accordance to this determination at the ODE level, one can also

formally define input and output processes at the process level. A connection between the
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two abstraction levels is given by the occurrence levels we previously introduced as a state

space representation for combinatorial reaction networks. These coordinates allow a direct

assignment of model states to specific molecular processes. Each occurrence level, such as

[R(∗, ..., ∗, Ei, ∗..., ∗)], can be directly assigned to its respective process, namely Ei binding to

R. Analogously, occurrence levels of higher tiers, such as [R(E1, E2, E3, ∗, ..., ∗)], can be linked

with three different processes. All processes that are related to the chosen output variables are

said to be output processes, and all processes that can be directly assigned to the input variables

analogously correspond to the input processes. This direct link between model variables and

processes facilitates the unique translation of all input and output variables to a set of input

and output processes. Let us consider an example and presume that the concentration of E1 is

our input variable, while [R(∗, E2, ∗, ..., ∗)] and [R(∗, ∗, ∗, E4, E5, ∗, ..., ∗)] are output variables.

In this case E1 binding to R is an input process, and E2, E4 and E5 binding to R are output

processes.

Furthermore, we can formally introduce process controllability and process observability. Ac-

cording to the familiar concept of controllability at the ODE level, a process will be called

process controllable if it is either directly or indirectly influenced by one of the input processes.

Analogously, a process will be called process observable if it directly or indirectly affects one

of the output processes. In contrast to controllability and observability of an ODE model,

the respective system properties at the process level can be analyzed in a very simple way by

considering the process interaction graph. In this graph processes are regarded as nodes, while

process interactions are represented as directed edges. This definition of an interaction graph

is very similar to that proposed by Klamt et al. [74]. A process P is process controllable if

the interaction graph comprises a directed path from one of the input processes to the process

P . The same process is observable if there exists a directed path from P to one of the output

processes.

A relation between the controllability and observability concepts at the different abstraction

levels can also be seen. Process controllability suggests that all states that are assigned to

this process are influenced and therefore controllable. Process observability on the other hand

indicates that the respective occurrence level of the 1st tier is observable. State variables that

describe occurrence levels of higher tiers, such as [R(E1, E2, E3, ∗, ..., ∗)], are only observable if

the related processes all jointly affect at least one of the output processes. Thus, we have found

a way to predict whether a certain state might be observable or controllable by considering the

process interactions. Note that this technique provides a conservative estimation which, in some

cases, will classify states as controllable or observable when in fact they are not. This statement

can be confirmed by reconsidering Example 2: Domain phosphorylation above. In this example

all processes are process observable and controllable. Additionally, all of the occurring processes

jointly affect the E2 binding process which is one of the output processes. Nevertheless, two of

the system states are unobservable and the model is exactly reducible. However, the method

gives correct predictions for many other considered examples and therefore proves to be a

helpful tool in analyzing combinatorial reaction networks.
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4.2.2 Reduced Order Modeling Technique

The enormous complexity of most real signal transduction networks impedes the application of

the previously proposed model reduction technique. New alternative techniques are required

which allow for the direct generation of reduced model equations. The already-introduced

concepts of process interactions, interaction graphs as well as process controllability and ob-

servability serve as a basis for the following considerations. The fundamental idea is that at the

macroscopic level, a mathematical description of a certain process merely requires the incor-

poration of those other processes that exert some influence on the considered one. A detailed

specification of the method will be given below and is structured in nine elementary steps. Each

step will be illustrated considering the example shown in Figure 4.6.

Step 1: Definition of all proteins, binding domains as well as binding and modification pro-

cesses that will be included into the model. In the considered example, the model will comprise

of the molecules A, B, C and D with their binding domains as depicted in Figure 4.6 A. The oc-

curring processes are usually labeled or numbered as indicated in Figure 4.6 A. In the example,

we consider eight different processes, namely binding of A to B (process 1), phosphorylation of

B at different domains (processes 2, 3 and 7), binding of C to B (process 4), phosphorylation

of C at two distinct domains (processes 5 and 6), as well as binding of D (process 8).

Step 2: In a second step, one has to define all occurring process interactions, including

whether these are uni- or bidirectional. These process interactions have to be consistent with

both measured kinetic data of the involved proteins, and the thermodynamic constraints as

discussed in Chapter 3. Since a mathematical model requires a complete definition for all

interactions, fragmentary knowledge has to be completed by assumptions. In Figure 4.6 A, the

occurring process interactions of the example are indicated by arrows. The processes (1, 2),

(1, 3), (3, 7), (4, 5) and (4, 6) are assumed to interact unidirectionally. The processes (3, 4) and

(7, 8) are considered to be all-or-none interactions, which by definition are mutual interactions.

All other processes do not interact directly.

Step 3: The interaction pattern of the system has to be translated into an interaction graph.

As mentioned before, the labeled or numbered processes are nodes and the occurring interac-

tions are represented by directed edges (arrows) pointing to the process under influence. The

interaction graph for the considered example is depicted in Figure 4.6 B.

Step 4: One defines input and output processes according to the considered system stimula-

tions, as well as available measurements or research interests. The goal of generating a model

that accurately describes the output processes at a macroscopic level necessitates the further

inclusion of all other processes that are process observable. In the example we choose the

processes 2, 3, 5 and 8 as output processes. They are marked by grey circles in Figure 4.6 B.
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Figure 4.6: Exemplification of the developed reduced order modeling technique. The considered
example is very similar to the previously discussed insulin example. Only the interaction pattern is
different. The depicted steps of the reduced order modeling technique are explained in the text.
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Step 5: The interaction graph can be divided into output subgraphs. An output subgraph

contains all nodes from which a specific output node can be reached following the directed edges.

Hence, an output subgraph comprises all processes, which are process observable considering

a special output process. If a node does not occur in any output subgraph the corresponding

process cannot influence any of the output processes and can be completely omitted. Finally,

one has to eliminate redundant information, i.e. subgraphs which are completely included

by other, bigger subgraphs. In principle one can also analogously define input subgraphs and

determine which processes are uncontrollable. However, uncontrollable but observable processes

cannot simply be eliminated from further consideration. Uncontrollability merely allows for

quasi-steady state assumptions at the ODE level. The graph shown in Figure 4.6 B can be

divided into four output subgraphs, as shown in Figure 4.6 C. In this example process six

does not influence any of the considered output processes and can be omitted in the following

considerations. The subgraph for output process three is completely contained in two other

subgraphs and therefore can be eliminated.

Step 6: Each of the output subgraphs describes an autonomous signaling path, which can

be modeled separately. Hence, the next step is to create complete mechanistic models for each

subgraph. Processes not being part of a subgraph are not included in the respective model.

This step will be further explained considering the smallest subgraph of the example system

that comprises the processes 1 and 2. The mathematical model is given by

r1 = k1[A][B(0, 0)]− k−1[B(A, 0)]

r2 = k1[A][B(0, P )]− k−1[B(A,P )]

r3 = k2[B(0, 0)]− k−2[B(0, P )]

r4 = k3[B(A, 0)]− k−3[B(A,P )]

d

dt


[A]

[B(0, 0)]

[B(A, 0)]

[B(0, P )]

[B(A,P )]

 =


−r1 − r2

−r1 − r3

r1 − r4

−r2 + r3

r2 + r4

 , (4.23)

in which the rates r1 and r2 describe the binding of A to the scaffold protein B (process 1), and

the rates r3 and r4 describe the phosphorylation of B (process 2).

Step 7: The model equations have to be transformed to new more convenient coordinates,

which allow the elimination of redundant information, still present in the subgraphs. This re-

dundancy is due to the fact that some processes are included in several subgraphs. A suitable

choice of new coordinates is given by the previously introduced occurrence levels. As an exam-

ple, we again consider only the smallest subgraph of the system which comprises processes 1

and 2. The first tier in this example includes the overall concentrations of the molecules A and

B

[A(∗)] = [A] + [B(A, 0)] + [B(A,P )]

[B(∗, ∗)] = [B(0, 0)] + [B(A, 0)] + [B(0, P )] + [B(A,P )].
(4.24)
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The next tier comprises the first order occurrence levels, which are given by

[B(A, ∗)] = [B(A, 0)] + [B(A,P )]

[B(∗, P )] = [B(0, P )] + [B(A,P )].
(4.25)

In this example there only one further tier occurs describing the second order occurrence levels,

namely

[B(A,P )] = [B(A,P )]. (4.26)

Processes that are not included in the current subgraph are simply omitted since they are not

observable. If the sub-model still contains unobservable states these can also be eliminated at

this stage of the procedure.

Step 8: The proposed transformation allows for the dissection of the model equations of each

subgraph into modules, as shown above. These modules are characterized by unidirectional

communication with other modules. Processes which directly or indirectly interact mutually

form one module. If some processes are included in more than one subgraph, the models of these

subgraphs will contain identical modules. Multiple copies of modules can be eliminated and the

remaining modules can be merged to a complete model. For instance, the transformed ODEs for

the discussed smallest subgraph do have a special structure. The variables [A(∗)] and [B(∗, ∗)]
are constant and equal their initial concentration. The corresponding ODEs are not required.

Additionally, the ODE for [B(A, ∗)] does not depend on [B(∗, P )] and [B(A,P )], which is due

to the unidirectional process interaction between A binding to B and phosphorylation of B.

Hence, the remaining three ODEs can be divided into two modules. One module only comprises

the ODE for [B(A, ∗)], which describes the dynamics of process 1. The second module comprises

the other two ODEs, which describe the dynamics of process 2. The ODEs deduced from the

two remaining output subgraphs shown in Figure 4.6 C, can be divided into six more modules

as indicated in Figure 4.6 E. Each box represents a set of ODEs. The modules are labeled with

the process numbers which are described by the appropriate ODEs. Two copies of module (1)

and one of module (3,4) can be eliminated here. The resulting model, which consists of only

22 ODEs, is schematically shown in Figure 4.6. A complete mechanistic model of the network

would comprise 77 ODEs of which three can be eliminated due to mass conservation relations.

Step 9: In a final step, one can take a quasi-steady state assumption for all uncontrollable

states that are still part of the reduced model.

The presented procedure has the advantage to facilitate a direct generation of reduced model

equations. Admittedly, the number of equations that have to be set up in step six, in general

include redundant information about processes which can be observed at numerous outputs.

However, the absolute number of ODEs that have to be generated is usually much lower than

the number when a complete mechanistic model is created. In the considered example, one

only has to set up 27 ODEs using the described procedure. A complete combinatorial model

would comprise 77 states. The method has to be slightly modified if one of the output variables
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is a higher order occurrence level which is not contained in any of the submodels. Let us

assume that one of the output variables in the example is [B(∗, P (∗), P (∗), ∗)] which describes

both process 2 and process 3. Since none of the three subgraphs depicted in Figure 4.6 C

comprises both processes simultaneously, the quantity [B(∗, P (∗), P (∗), ∗)] will not be a state

of the reduced 22 ODE model. This problem can be overcome by the fusion of two subgraphs.

This will necessarily increase the number of ODEs that has to be generated as well as the final

size of the reduced model. However, the number of ODEs would still be smaller than 77.

Furthermore, the inclusion of production and degradation into the mathematical model necessi-

tates another extension of this method. The same holds true if the considered system includes

multifunctional protein binding domains, such that certain binding domains are involved in

several binding processes. Both cases will be discussed in the following sections.

4.2.2.1 Multifunctional Protein Binding Domains

Multifunctional protein binding domains are domains which can recruit more than one binding

partner. A typical example is the effector protein Grb2 that can either bind to several ErbB

receptors or to the adaptor protein Shc. A constellation like this can lead to problems with the

reduced order modeling approach introduced above. The problem occurs if such a multifunc-

tional binding domain is part of two or more output subgraphs, as shown in Figure 4.6 C.

Probably the most simple example to illustrate this problem is a scaffold protein R which

provides two binding domains. Both of these domains recruit the effector protein E which

possesses one binding domain. The binding domain of E is a multifunctional one, since it can

bind to both R domains. If we assume that the two binding processes of the regarded system

are completely independent and that both are considered as output processes, the system can

be divided into two subgraphs. These subgraphs are somehow degenerated since both only

comprise a single node. According to the reduced order modeling approach, both binding

processes can be modeled separately. However, the problem is that the binding domain of

the effector E is involved in both processes. This is a typical crosstalk situation. Since the

number of effector proteins E and therefore the number of E binding domains is limited, the

recruitment of E to one receptor domain reduces the concentration of unbound effectors and

therefore has an indirect influence on the other binding process.

One possible solution for this problem is to merge all output subgraphs that share such multi-

functional binding domains. This approach has the drawback where the number of equations

that have to be generated in the sixth step of the modeling procedure can be significantly in-

creased. Alternatively, one can formulate the reaction rates for both subgraphs independently.

However, all species which are simultaneously involved in both submodels have to be balanced

in one joint ODE. If the first subgraph of the example is translated into a reaction rate, one

has to consider only the rate

r1 = k1[R(0,#)][E]− k−1[R(E,#)]. (4.27)
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In this representation, the identifier # indicates that the real scaffold protein offers further

binding domains, but the resulting combinatorial complexity is neglected. The second subgraph

can be described by the reaction rate

r2 = k2[R(#, O)][E]− k−2[R(#, E)]. (4.28)

An ODE model is obtained by balancing all occurring species. Since the species E is involved

in both submodels it is necessary to create one joint ODE for [E]. Note, that species like

R(0,#) and R(#, 0) are considered to be completely different molecules. This also emphasizes

the point that domains are the fundamental elements of these reaction networks because both

species describe the same molecule but different binding domains. Thus, one can also argue that

domains are balanced, instead of molecules. From another point of view it can be suggested

that R(0,#) and R(#, 0) are two different proteins which compete for E binding. The resulting

ODE model is given by
d[R(0,#)]

dt
= −r1

d[R(E,#)]

dt
= r1

d[R(#, 0)]

dt
= −r2

d[R(#, E)]

dt
= r2 (4.29)

d[E]

dt
= −r1 − r2.

Following this procedure, one does not have to consider the complete combinatorial complex-

ity of the network. For each subgraph only those reactions that are necessary to describe

all processes included in the respective subgraph are generated. One also has to use a joint

transformation in this case which is given by

[R(∗,#)] = [R(0,#)] + [R(E,#)]

[R(#, ∗)] = [R(#, 0)] + [R(#, E)]

[E(∗)] = [E] + [R(E,#)] + [R(#, E)] (4.30)

[R(E,#)] = [R(E,#)]

[R(#, E)] = [R(#, E)].

This means that occurrence levels can be composed of species from both submodels such as

[E(∗)] in the considered example.

This simple modification or extension of the proposed modeling approach facilitates its appli-

cation to a larger set of reaction systems. It will also be of great importance in modeling the

crosstalk between EGF and the insulin receptor, discussed below.

4.2.2.2 Production and Degradation

A process that has been completely neglected in the preceding considerations which plays

a crucial role in many real signal transduction networks is the production and degradation

of signaling proteins. Like association and dissociation, production and degradation are two
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aspects of the same process. This process increases or decreases the number of available proteins,

and thus, can have a strong impact on the dynamic behavior of a reaction network. A quite

simple way of modeling production and degradation, which we will adopt here, is the assumption

of a constant production rate, and a degradation rate which is proportional to the concentration

of the degraded species. Production is necessarily restricted to a very limited number of species,

namely all one-protein species. Larger complexes which correspond to aggregates of numerous

signaling proteins are not produced. Their formation process is part of the combinatorial

reaction network. However, each feasible signaling complex can be degraded either by natural

decay or by controlled degradation. In many cases ubiquitin is used as a marker for controlled

degradation. In the case of EGF signaling it is known that internalized and phosphorylated

ErbB1 receptors can recruit the E3 ubiquitin ligase Cbl, leading to ubiquitination of ErbB1.

This facilitates binding of the adaptor protein UIM (ubiquitin-interacting motif) which targets

the receptor complex to the lysosomes for degradation [27]. A still unanswered question in this

context is whether the whole signaling complex is degraded, or only the ErbB receptor while

the adaptor proteins are recycled.

For the sake of simplicity, we make a number of assumptions. First, the considerations will

be focused on production and degradation of the considered receptor or scaffold protein and

its complexes. The individual receptor protein R will be produced at a constant rate, and all

receptor species are presumed to have a natural decay rate. All other adaptor and effector

proteins are neither produced nor degraded. If a receptor complex is degraded, all bound

adaptor proteins will be recycled to the cytosol. Furthermore, we take the assumption that

if the receptor is marked by ubiquitination, its degradation rate is modulated. This change

of the degradation rate from natural decay to ordered degradation can be considered as a

process interaction. Ubiquitination has a direct influence on degradation. Another interesting

question is that of which processes are influenced by degradation or production of R. It is

quite obvious that all processes which involve one of the R binding domains are affected.

Theoretically, degradation can be considered as a process which sets the kon values of all R

binding domains to zero and all koff values to infinity. All other effects caused by degradation

are indirect. Note that if one takes the assumption that a complex is degraded with all its bound

adaptor proteins, all processes that modify or enlarge the R complex are directly influenced. All

these interactions are unidirectional, which can be simply introduced in the process interaction

graph. Production and degradation is one additional node in this graph which, for example, is

influenced by ubiquitination and can affect numerous other binding and modification processes.

Note, that the inclusion of production and degradation for all involved proteins is possible but

often highly restricts the possibility of exact model reductions. However, this is not a problem

caused by the modeling technique but rather a structural problem of these systems.
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4.2.3 Conclusions

A direct generation of reduced model equations for signal transduction networks is inevitable

due to the enormous complexity of most real pathways. Such a reduced order modeling ap-

proach is introduced and formalized here. The approach is based on qualitative information

about processes and process interactions, which is integrated into a process interaction graph.

The formal definition of new characteristics such as process controllability and observability

allows us to make statements about controllability and observability of model equations. Ad-

ditionally, these concepts facilitate reduced order modeling by dissecting the interaction graph

into independent subgraphs. These subgraphs can be separately translated into submodels. The

further application of the previously introduced hierarchical transformation for combinatorial

reaction networks facilitates a modularization and a subsequent reintegration of the submodels.

In many cases the resulting subgraphs can be separately modeled and transformed. One has

to be careful in the vase where certain binding domains are involved in more than one subsys-

tem. A further complication results from the inclusion of protein production and degradation,

or the translocation of proteins to other compartments. However, for all these special cases,

alternative procedures can be found, meaning that if it is possible to handle all kinds of real

signaling networks. The only limitation is given by high grades of process interconnectivity. If

an interaction graph cannot be split into smaller subgraphs, this method will not provide any

simplification. However, this is not a limitation of the reduction method but rather indicates

that the system under consideration cannot be exactly reduced.

4.3 Example: EGF and Insulin Receptor Crosstalk

The discussed methods will be used to generate a reduced model of EGF and insulin receptor

crosstalk. We will compare a complete mechanistic description of this crosstalk and an exactly

reduced version. Approximate reductions of this network will be discussed in the next chapter.

4.3.1 Model Definition

In a first step, the molecules and processes which are included in the model, and the assump-

tions made concerning the process interactions will be defined. Since a manageable complete

mechanistic model will also be generated, the considerations will be limited to a small part of

the real signaling network. For instance, only the EGF receptor (EGFR/ErbB1) will be taken

into account and the other three ErbB receptors shall be ignored. Similar simplifications have

been made by many other modelers in the past [122, 73, 12]. In order to avoid an unmanageable

combinatorial explosion of feasible EGF receptor species, only two intracellular domains will be

modeled. According to Schulze et al. the EGF receptor possesses, among others, six potential

residues for Grb2 and also six residues for Shc [123]. Hence, we consider one binding domain

for each of these two effector proteins. In the consideration of the insulin receptor family, we
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Figure 4.7: The drawn part of the EGF and insulin receptor network is modeled. The process
interactions are depicted by arrows. Black arrows represent uni- and bidirectional interactions, while
grey arrows describe all-or-none interactions. A complete mechanistic model of this network comprises
5,182 ODEs, while the exactly reduced one consists of solely 87 ODEs.

will focus on the insulin receptor (IR) and exclude potential crosstalk with the insulin-like

growth factor receptor (IGFR), and the insulin related receptor (IRR). Again we restrict the

considerations to two intracellular IR domains, namely one for Shc and one for IRS.

EGFR provides an extracellular binding domain that recruits EGF [27, 108]. Furthermore, the

receptor monomers can form homodimers after being activated by the ligand. This dimeriza-

tion induces the phosphorylation of numerous intracellular domains [83, 66, 120]. According to

thermodynamic constraints we discussed in Chapter 3, EGF binding and receptor dimerization

have to interact mutually, fulfilling the Wegscheider conditions. A mutual interaction is also

suggested by experimental data [18, 100, 46]. An unidirectional influence between two processes

is only feasible if the reaction cycles formed by these processes are futile ones. Phosphorylation

can be unidirectionally influenced, as discussed for the insulin receptor in Chapter 3. Analo-

gously, EGFR dimerization is assumed to unidirectionally influence EGFR autophosphorylation

of the considered intracellular domains. We also presume that all phosphorylation processes

occurring in our example are unidirectionally induced, except for the phosphorylation of SOS

(see below). A direct interaction between EGF binding and phosphorylation is not presumed to

occur. After the two intracellular domains are phosphorylated, one of them recruits Grb2 and

the other Shc. The interaction between receptor phosphorylation and subsequent effector bind-

ing will be an all-or-none interaction. Phosphorylation is assumed to be essential for effector

binding and effector binding prevents receptor dephosphorylation for steric reasons. Further-

more, it is also known that Shc can be phosphorylated after having bound to EGFR [115].

In accordance with the assumption concerning phosphorylations, Shc binding is thought to

unidirectionally affect Shc phosphorylation. The phosphorylated Shc protein can also recruit
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Grb2 [115]. Grb2 possesses an additional domain, which recruits the adaptor protein SOS. SOS

is a guanine exchange factor (GEF) which can activate the membrane-bound small G-protein

Ras, by effecting the exchange of GDP for GTP [86, 24]. Active RasGTP in turn initiates

the MAP kinase cascade. Phosphorylated ERK, which is a component of the MAP kinase

cascade, stimulates a serine/threonine phosphorylation of SOS, resulting in dissociation of the

Grb2-SOS complex [137, 24]. Thus, we take the assumption that the Grb2-SOS binding is not

influenced by the association of Grb2 to either a phosphorylated EGF receptor, or phosphory-

lated Shc. However, if SOS is phosphorylated by ERK, which is considered as an additional

input signal, the Grb2-SOS complex dissociates. Here we assume a mutual interaction between

SOS phosphorylation and Grb2-SOS binding.

The insulin receptor consists of two constitutively dimerized monomers and is activated exclu-

sively by ligand binding without further oligomerization [103]. Due to the dimeric structure of

the insulin receptor, two insulin binding domains will be included into the model. According to

the thermodynamic constraints and experimental results, these two domains have to interact

mutually [134]. Ligand binding is assumed to unidirectionally influence the phosphorylation

of the two considered intracellular domains [47]. Shc is assumed to bind with other kinetic

parameters to IR than when binding to EGFR. However, Shc phosphorylation, as well as Grb2

binding to phosphorylated Shc and so on is parameterized in the same way as in the case of

EGFR. In order to reduce the complexity of the network, numerous binding domains of the

scaffold IRS are ignored. The model only accounts for IRS binding to the phosphorylated

insulin receptor, subsequent IRS phosphorylation and binding of the Grb2-SOS complex. In

order to reduce the complexity of the model, receptor internalization and degradation is also

neglected for both IR and EGFR.

All considered molecules, processes and process interactions are also depicted in Figure 4.7.

The reaction rules generating this complete mechanistic model are depicted in Table 4.12.

4.3.2 Complete Mechanistic Model vs. Exactly Reduced Model

A complete mechanistic model of the described network of EGF and insulin receptor crosstalk

comprises 42,956 reactions and 5,182 ODEs. According to the assumed process interactions

the complete network can be parameterized by 68 kinetic parameters which can be seen in

Table 4.12. The exact numerical value of these parameters does not play an important role in

this context. The main purpose of this model is to illustrate the possibilities offered by the

new reduction methods. Hence, the model equations are normalized to relative concentrations.

The overall concentration of the considered components EGFR, IR, Shc, Grb2, SOS and IRS

are set to 100 percent. The kinetic parameters are chosen such that the model qualitatively

shows the expected behavior. We will focus on time plots of the quantities [IR(∗, ∗, SOS(∗), ∗)],
[IR(∗, ∗, ∗, SOS(∗))], [EGFR(∗, SOS(∗), ∗).∗] and [EGFR(∗, ∗, SOS(∗)).∗].

The complete mechanistic model can be generated by BioNetGen or other similar rule-based

modeling tools. This example was modeled using the software tool ALC [79]. ALC allows
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Table 4.12: Reaction rules for the considered example of EGF and insulin receptor crosstalk.
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the generation of combinatorial network models and produces output files for both Mat-

lab and Mathematica. For a numeric simulation of such a large ODE model, Matlab

is superior to Mathematica. However, one simulation run with the Matlab integrator

ode15s took several hours using a 3.06 GHz Intel R© XeonTM CPU with 2 GB main memory.

The simulation can be sped up by providing an analytically derived Jacobian matrix of the

ODE system. All non-zero elements of the Jacobian matrix have been analytically calculated

using Mathematica and afterwards have been exported to Matlab. The resulting sim-

ulation files have a size of over 13 MB, and a single simulation run still took about half an hour.

An exactly reduced version of the crosstalk model was generated using the reduced order model-

ing approach we introduced above. In order to get comparable results for all occurring binding

and phosphorylation processes, each of them was chosen as output processes. The process

interaction graph of the considered system can be divided into four subgraphs. Each subgraph

describes one intracellular binding domain, either of the EGF or the insulin receptor. However,

due to the multifunctionality of the Grb2 binding domain all four subgraphs comprise the Grb2-

SOS binding process as well as the serine/threonine phosphorylation of SOS. Consequently, the

four subgraphs have to be simultaneously modeled and all species have to be simultaneously

balanced. The resulting model comprises 1,826 reactions and 391 ODEs, which is already a

significant reduction compared to the complete model. A further reduction can be achieved by

transforming the model to the previously-introduced occurrence levels and subsequent elimi-

nation of redundant, unobservable and uncontrollable system dynamics. The final and exactly

reduced model of the network consists of 87 ODEs, which can be divided into six unidirec-

tionally coupled modules. One of these modules, which consists of four ODEs, describes EGF

binding and EGFR homodimerization. Another module specifies insulin binding to the insulin

receptor and comprises two ODEs. Six ODEs are required to model IR phosphorylation at the

IRS domain, and subsequent IRS binding. Shc binding to EGFR as well as IR and the related

domain phosphorylations form another module with a total number of 18 ODEs. The largest

module consists of 32 ODEs and describes Grb2 binding to the EGF receptor as well as to

phosphorylated Shc. The last module comprises all variables describing SOS binding and SOS

phosphorylation and consists of 25 ODEs. One simulation run of this exactly reduced model

only takes a few seconds. The size of the simulation file is 37.4 KB. In Figure 4.8, it is shown

that both models also provide exactly the same results for the considered output variables.

4.3.3 Conclusions

The methods for exact model reduction and reduced order modeling that have been introduced

in this thesis facilitate a strong reduction of the considered crosstalk model. The complete

mechanistic model, which comprises 5,182 ODEs, can be reduced to only 87 ODEs. Further-

more, the reduced model can be divided into six modules, which strongly simplifies parameter

estimation or model analysis. The simulation time has been reduced by a factor of approxi-

mately five hundred. This clearly shows that these new methods are well suited to circumvent
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Figure 4.8: Simulation results of the generated crosstalk model. The kinetic parameters of the
model have been chosen such that the system qualitatively shows the expected behavior. All quan-
tities are depicted in relative concentrations. The overall concentrations of all involved components
have been set to 100. The displayed curves show the chosen input signals [EGF ], [insulin] and
[ERK] as well as the output concentrations [IR(∗, SOS, ∗)], [IR(∗, ∗, SOS)], [EGFR(∗, SOS, ∗).∗]
and [EGFR(∗, ∗, SOS).∗].
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the problems arising from combinatorial complexity in a systematic manner. Furthermore,

their applicability to very complex and realistic reaction networks has been shown.
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Chapter 5

Approximate Model Reduction

The previous chapter is dedicated to the exact reduction of combinatorial reaction networks.

Exact reducibility is only a border case in model reduction which is only feasible if a model

comprises unobservable or uncontrollable states. In general, the term model reduction refers

to approximate reduction techniques. All approximate reduction methods can be viewed as a

trade-off between complexity and error margin. The purpose is to find a system of minimal

complexity that optimally approximates the original one in terms of the system output, for a

given error margin. Conversely, one may also search for a system that approximates the original

one with minimal error within the class of systems with maximal admissible complexity [5]. The

development of such approximate techniques for combinatorial reaction networks is necessary,

since in many cases exact reductions are not feasible or the exactly reduced models remain

unmanageably large.

5.1 Approximate Model Reduction

In literature, one can find numerous contributions about approximate model reduction. A

rough overview about available model reduction techniques, their main application range, as

well as their drawbacks is given in the Background section. It has already been discussed that

all available model reduction techniques for dynamic ODE models can be divided into two

classes. Time-scale based approaches on the one hand, and observability and controllability

based approaches on the other hand.

In order to develop a new approximate model reduction technique, adapted to the special

requirements of combinatorial reaction networks, which provides good approximation results,

both of these approaches will be combined. The main challenge of time-scale based approaches

is how to find a low dimensional subspace or manifold to which all trajectories converge very

quickly. The reduction of the model is achieved by projecting the real system trajectories from

the n dimensional state space onto this low dimensional manifold. It is quite clear that the

quicker the original trajectory converges towards the defined slow manifold, the faster an initial
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error will vanish. Each manifold can be characterized by algebraic equations ~Ψ(~x) = 0, where

~x is the state vector of the original system. A number of d independent algebraic equations

facilitates the elimination of d ODEs and therefore a reduction of the model to n−d differential

equations. For linear systems, slow subspaces or manifolds can be found by an eigenvalue

decomposition. For nonlinear systems, slow manifolds are rather difficult to find and are,

in general, approximated. Examples of slow manifold approximations are quasi-steady state

or rapid equilibrium assumptions. However, in the case of quasi-steady state assumptions, the

main problem is that in many cases ~Ψ(~x) = 0 cannot be analytically solved, or does not provide

an unique solution. The application of the rapid equilibrium assumption requires knowledge

about the velocity of individual reactions which is not available in many cases. Thus, one has

to find a slow manifold approximation ~Ψ(~x) = 0 on the basis of available qualitative knowledge.

Another requirement is that ~Ψ(~x) = 0 is analytically and uniquely solvable.

The approximation quality also depends on a second circumstance, namely the choice of vari-

ables which are to be eliminated. The d algebraic equations ~Ψ(~x) = 0 can be solved for all d

variables ~ξ = ~φ(~x) that fulfill the condition

rank

(
∂~Ψ

∂~ξ

)
= d. (5.1)

It is quite easy to see that the choice of ~ξ plays a crucial role in this context. Assume that

a system has one single output variable y = xi. Furthermore, a slow manifold approximation

Ψ(~x) = 0 is known. If this equation is used to replace the ODE for the state xi, the output

signals of the reduced and the original model will in general not coincide for t = 0. However,

if another ODE is eliminated by using this algebraic equation, the two output signals will have

the same starting point. The approximated model will give the best results if those variables

that are only scarcely observable and controllable are replaced.

In this chapter, a new general technique will be introduced, which allows for the definition slow

manifold approximations for large combinatorial reaction networks. This method is also based

on the work of Borisov et al. [16], but focuses on another aspect than that focused on by the

exact reaction method. We will then make some considerations about observability measures

of combinatorial reaction networks in order to decide which states are to be replaced.

5.1.1 Starting Point

As in the case of exact model reduction, the starting point of our considerations will be the

work of Borisov et al. [16] regarding combinatorial complexity. First, we will reconsider the

previously introduced Example 2.5, namely a receptor R providing two distinct binding domains

that can recruit the ligands L and E. Furthermore, we assume that both binding processes do

not interact. We have already shown that the occupancy levels of this receptor can be exactly
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modeled by the following two ODEs

d[R(L, ∗)]
dt

= k1[L] ([R(∗, ∗)]− [R(L, ∗)])− k−1[R(L, ∗)]

d[R(∗, E)]

dt
= k2[E] ([R(∗, ∗)]− [R(∗, E)])− k−2[R(∗, E)]

(5.2)

if we assume that the overall concentration [R(∗, ∗)] is constant and the concentrations [L] and

[E] are considered as inputs. However, we have lost the information about the state variable

[R(L,E)]. Borisov et al. [16] suggested the recalculation of this state on the basis of probabil-

ity calculus. Since both binding processes are completely independent this approach appears

reasonable. If one considers an arbitrary receptor molecule of the system, the probability of

choosing one that has bound the ligand L is P (L) = [R(L,∗)]
[R(∗,∗)] . Analogously, the probability of

choosing a receptor that has recruited E is P (E) = [R(∗,E)]
[R(∗,∗)] . Due to the independence of the

two processes, the probability of choosing a receptor molecule that has bound both ligands is

P (LE) = P (L) · P (E). From this it follows

[R(L,E)] = P (LE) · [R(∗, ∗)] =
[R(L, ∗)] · [R(∗, E)]

[R(∗, ∗)]
. (5.3)

Alternatively, this equation can be written as

Ψ(~x) = [R(L,E)] · [R(∗, ∗)]− [R(L, ∗)] · [R(∗, E)] = 0 (5.4)

and defines a manifold. On the basis of the probability calculus one can formulate similar

algebraic equations for much more complex combinatorial reaction networks if they comprise

independent processes. Such relations build the basis for the further considerations.

5.1.2 Time-Scale Based Approaches and Slow Manifolds

Slow manifolds are nonlinear subspaces of a model’s state space, to which all possible trajec-

tories converge very quickly. Borisov et al. introduced algebraic relations which result from

probability calculus [16]. Each set of algebraic equations can be considered as the definition of

a manifold. A great property of Equation 5.4 is that it is completely independent of kinetic

parameters. Furthermore, it can be analytically solved for all four state variables. However, the

question remains as to whether it describes a slow manifold or is at least a good approximation

of a slow manifold. If Equation 5.4 is not fulfilled, the numerical value of ~Ψ(~x) can be consid-

ered as a measure for the approximation error of Equation 5.3. Interestingly, it can be shown

by some simple calculations that this manifold is attractive and fulfills the linear differential

equation

Ψ̇ + aΨ = 0 with a = k1[L] + k−1 + k2[E] + k−2. (5.5)

Consequently, the defined manifold is invariant, for instance, if the initial conditions of the

system fulfill Equation 5.4, the system trajectory will remain on the defined manifold for all
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times t > 0. If the initial condition of the system does not fulfill Equation 5.4 the trajectory

converges to this manifold.

Let us furthermore presume that the concentrations [L] and [E] remain constant over time.

This assumption results in the example system being linear. For this linear system one can

perform an eigenvalue decomposition. The eigenvalues of the system are λ1 = −k1[L] − k−1,

λ2 = −k2[E] − k−2 and λ3 = −k1[L] − k−1 − k2[E] − k−2. Importantly, the fastest eigenvalue

λ3 coincides with the eigenvalue of Equation 5.5. Hence, all trajectories converge very quickly

to the defined manifold, which therefore can be regarded as slow manifold.

Another very interesting interpretation of Equation 5.4 can be obtained by transforming it to

the coordinates [R(0, 0)], [R(L, 0)], [R(0, E)] and [R(L,E)]. The transformed equation is given

by

[R(0, 0)] · [R(L,E)]− [R(L, 0)] · [R(0, E)] = 0 (5.6)

or equivalently
[R(L, 0)]

[R(0, 0)]
=

[R(L,E)]

[R(0, E)]
. (5.7)

The same result can be derived from the rapid equilibrium assumption. If one takes the rapid

equilibrium assumption for the reactions r1 and r2 (see Equation 2.5), this yields

[R(L, 0)]

[L] · [R(0, 0)]
=

k1

k−1

= Keq,1 Keq,1 =
k1

k−1

=
[R(L,E)]

[L] · [R(0, E)]
. (5.8)

Since both reactions have the same equilibrium constant Keq,1, the two relations can be equated.

If one additionally cancels the concentration [L] the resulting formula coincide with Equa-

tion 5.7. The same equation can be derived by taking the rapid equilibrium assumption for the

rates r3 and r4 from Example 2.5.

However, the question remains as to whether this finding is of any use for model reduction,

since complete independence of processes always facilitates exact reducibility. In the considered

example, Equation 5.4 does not allow for the elimination of the two states that the minimal

realization (Equation 5.2) consists of. It merely facilitates the reconstruction of the eliminated

unobservable state variable [R(L,E)]. In order to further explain how the discussed results

can be used for model reduction we consider a slightly modified example. Again we consider a

receptor protein with two binding domains where the first domain can recruit the ligand L. Fur-

thermore, we assume that ligand binding induces phosphorylation of the second domain. This

phosphorylated domain consecutively binds the effector E. In terms of process interactions, we

take the assumption that L binding unidirectionally influences the phosphorylation of R, and

that there is an all-or-none interaction between the phosphorylation and the effector binding

process. The complete reaction network is depicted in Figure 5.1. A mechanistic model of this

reaction network comprises seven reactions and five ODEs, if one presumes that the overall

concentration of R stays constant and that [L] and [E] are input signals. This model cannot

be exactly reduced since all five states are both observable and controllable. In contrast to the

first example we considered the three processes here are not completely independent. However,
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Figure 5.1: Example for approximate model reduction. The depicted reaction network is adapted
from Koschorreck et al. [78].

L binding and E binding only interact indirectly with each other, such that L binding does not

have a direct effect on E binding. The indirect influence is mediated by the phosphorylation

process. Recruitment of L induces receptor phosphorylation, which in turn facilitates effector

binding. The fact that the two binding processes do not directly interact, indicates that the

reactions r3 and r7, as well as the reactions r5 and r6 (compare Figure 5.1), are parameterized

by the same kinetic parameters respectively. These four reactions form a reaction cycle similar

to the one given in the previous example. Using the rapid equilibrium assumption, one can

derive an equation similar to Equation 5.4

[R(L,E)] · [R(0, P )]− [R(L, P )] · [R(0, E)] = 0. (5.9)

Similar independent reaction cycles can be found in all combinatorial reaction networks which

comprise two or more indirectly or non-interacting processes. Each of these cycles facilitates

the formulation of equations like 5.9. If two processes do not interact directly, but instead

interact indirectly, the model is in general not exactly reducible and the derived equations can

be used to replace ODEs. We will analyze whether the assumption is justified stating that these

algebraic equations still describe slow manifolds or at least slow manifold approximations, if

the considered processes are not completely independent. It might be possible that indirect

interactions between two processes impairs the applicability of this approach for model reduc-

tion. In contrast to the isolated reaction cycle we analyzed in the first example, such cycles are

generally embedded into a larger network. Thus, if one of these cycles is analyzed, one has to

take influxes and outflows into consideration. Figure 5.2 depicts such a cycle. The fluxes J1 to

J4 can describe both influxes and outflows. The arrow only indicates that influxes correspond

to positive values of Ji and outflows to negative ones. From the rapid equilibrium assumption
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Figure 5.2: The fluxes Ji result from indirect interactions between the two considered binding pro-
cesses. Since the processes are assumed to be independent, the rates r1 and r3 are parameterized by
k1 and k−1. Additionally, the rates r2 and r4 are parameterized by k2 and k−2. The fluxes J1 to J4

can describe both influxes and outflows. The arrow only indicates that influxes correspond to positive
values of Ji and outflows to negative ones.

one can deduce the equation

Ψ(~x) = [R(L,E)] · [R(0, 0)]− [R(L, 0)] · [R(0, E)] = 0. (5.10)

Interestingly, the function Ψ(~x) still fulfills a linear differential equation. However, now this

ODE is inhomogeneous

Ψ̇ + aΨ = u(t) (5.11)

with

a = k1[L] + k−1 + k2[E] + k−2 (5.12)

and

u(t) = J1[R(L,E)]− J2[R(0, E)]− J3[R(L, 0)] + J4[R(0, 0)]. (5.13)

It is apparent that the error will completely vanish if u(t) = 0, for example if the fluxes Ji
vanish. From a thermodynamic point of view, all reaction rates have to vanish if the system

reaches thermodynamic equilibrium. Thus, one can guarantee that the stationary error will be

zero if the system in consideration ends up in thermodynamic equilibrium. This is the case if

two major conditions are fulfilled, such that the Wegscheider conditions have to be satisfied in

the whole network (compare Chapter 3), and none of the modeled concentrations is assumed
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to stay constant. However, most biological reaction networks operate far from thermodynamic

equilibrium, and as such, it is important to discuss the error for these cases. From ODE 5.11

one can easily derive the stationary error as

Ψs =
us
a
. (5.14)

The dynamic error is given by the general solution of ODE 5.11

Ψ(t) = e−a t
(

Ψ(0) +

∫ t

0

ea τu(τ)dτ

)
. (5.15)

In order to provide at least a rough estimation of the maximal error we assume that

u(t) = umax = max (J1[R(L,E)]− J2[R(0, E)]− J3[R(L, 0)] + J4[R(0, 0)]) . (5.16)

With this we can give the following error bound

Ψ(t) ≤ Ψ(0)e−a t +
umax
a

(
1− e−a t

)
. (5.17)

These equations show that both the steady state error as well as the maximal dynamic error

decrease for increasing values of a. These results indicate that Equation 5.11 does not describe

a slow and invariant manifold but it provides a very good approximation of a slow manifold.

It has been shown that in a complex combinatorial reaction network, one can deduce simple

algebraic equations for each pair of non-directly interacting processes. Due to their simple

structure and their good approximation of a slow manifold, this approach seems to be very

promising. The remaining question is that of which states of the original model will be replaced

by these algebraic relations in order to minimize the error of the output variables.

5.1.3 Observability Based Considerations

One essential requirement for observability based considerations in model reduction is the avail-

ability of a suitable measure. For linear systems, such measures can be easily obtained and are

widely used, namely the previously introduced observability and controllability gramians

Q =

∫ ∞
0

eA
T tCTCeAtdt

P =

∫ ∞
0

eAtBBT eA
T tdt.

(5.18)

Here, the matrices A, B and C represent the dynamic matrix, the input matrix and the output

matrix of the considered linear system (see Equation 2.10 in Chapter 2) respectively. These

gramians help to quantify the amount of energy obtained, by observing the output if the initial

condition of the system is ~x0, as well as the energy needed to steer the system from the state
~0 to ~x:

EO = ~xT0Q~x0 EC = ~xTP−1~x. (5.19)
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Figure 5.3: This Figure depicts the results of a statistical analysis of the dependence between ob-
servation energies and kinetic parameters. First, the model equations of the example introduced in
Table 5.1 is linearized. The linearized model is used to calculate the observability gramian Q. The
state [R(∗, ∗, ∗, E4)] has been chosen as model output. The diagonal matrix elements of Q correspond
to the observation energies for unitary disturbance of all individual model states. These values are
chosen as a measure to rate the observability of the considered system’s coordinates. For different sets
of parameters these values vary over several orders of magnitude. Therefore, we took 50, 000 arbitrary
parameter sets and compared the relative difference of the resulting observation energies. In this
Figure, the results for the states of the fourth module are shown. All observation energies are divided
by the observation energy obtained for a unitary disturbance of the output variable [R(∗, ∗, ∗, E4)].
Hence, the data is normalized such that the observation energy for [R(∗, ∗, ∗, E4)] is always equal to
one. The logarithm of these normalized observation energies is plotted on the ordinate. The boxes
span the distance between the 25% and the 75% quantile surrounding the median. The whiskers span
the data from the 10% quantile to the 90% quantile.

The related reduction approach, called balanced truncation, which is also introduced in Chap-

ter 2, eliminates the most scarcely observable and controllable system dynamics. This approach

is only applicable to linear systems and an equivalently practical approach for nonlinear sys-

tems is not available. However, the gramians Q and P can be calculated for linearized model

equations. They can give hints as to which system states are more or less observable or con-

trollable. We will focus on the observability gramian Q in order to determine which states will

be replaced by the algebraic equations derived previously.

As a starting point, we will consider a complete mechanistic model of a combinatorial reaction

network that has been transformed according to the transformation suggested in Chapter 4.

Furthermore, we assume that the system is not exactly reducible. Due to the hierarchical con-

figuration of the transformation pattern and, of the resulting transformed model equations, one

might hypothesize that this transformation not only realizes a Kalman decomposition, but also

sorts the system states according to their grade of observability. If this hypothesis is true, the

model equations will not have to be transformed anew. The perpetuation of the hierarchically

structured system coordinates has the additional advantage that the modular model structure

is preserved, and that the model variables keep their biological interpretability. However, note

that due to the enormous variability of combinatorial reaction networks, such a hypothesis can-

not be proved generally, but rather substantiated. For this purpose, we will consider and analyze
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R(0, ∗, ∗, ∗) + E1 � R(E1, ∗, ∗, ∗) k1, k−1

R(0, 0, ∗, ∗) + E2 � R(0, E2, ∗, ∗) k2, k−2

R(E1, 0, ∗, ∗) + E2 � R(E1, E2, ∗, ∗) k3, k−3

R(∗, 0, 0, ∗) + E3 � R(∗, 0, E3, ∗) k4, k−4

R(∗, E2, 0, ∗) + E3 � R(∗, E2, E3, ∗) k5, k−5

R(∗, ∗, 0, 0) + E4 � R(∗, ∗, 0, E4) k6, k−6

R(∗, ∗, E3, 0) + E4 � R(∗, ∗, E3, E4) k7, k−7

Table 5.1: Reaction rules for the considered receptor with four binding domains. The four binding
domains activate each other unidirectionally. The resulting complete mechanistic model comprises 15
ODEs and cannot be exactly reduced.

the model of a receptor with four binding domains as an example. Furthermore, we assume that

the first domain has an unidirectional influence on the second, which in turn unidirectionally in-

teracts with the third, and finally the third domain unidirectionally affects the fourth one. This

network can be described by the reaction rules depicted in Table 5.1. A complete mechanistic

model of this network is made up of 20 different individual species and 32 reactions. Due to

conservation relations, the number of ODEs can be reduced to 15. However, the model does not

comprise unobservable or uncontrollable states, but the transformed system can still be split

into four modules. The first module describes the level of occupancy of the first domain and

solely consists of one ODE for [R(E1, ∗, ∗, ∗)]. The second module describes the occupancy level

of the second domain, however, consists of two ODEs for [R(∗, E2, ∗, ∗)] and [R(E1, E2, ∗, ∗)].
The third and fourth module accordingly describe the occupancy level of the third and fourth

domain and comprise four and eight ODEs respectively. The third module consists of the states

[R(∗, ∗, E3, ∗)], [R(∗, E2, E3, ∗)], [R(E1, ∗, E3, ∗)] and [R(E1, E2, E3, ∗)]. Consequently, the last

module includes the states [R(∗, ∗, ∗, E4)], [R(E1, ∗, ∗, E4)], [R(∗, E2, ∗, E4)], [R(∗, ∗, E3, E4)],

[R(E1, E2, ∗, E4)], [R(E1, ∗, E3, E4)], [R(∗, E2, E3, E4)] and [R(E1, E2, E3, E4)]. The size of

these modules obviously depends on the number of processes that directly or indirectly influ-

ence the described occupancy level. No process has an influence on the first domain. The second

domain is only affected by the first one. For this reason the second module also comprises the

state [R(E1, E2, ∗, ∗)] which can be interpreted as mediator of this direct interaction. According

to this interpretation the state [R(∗, ∗, E3, E4)] would mediate the direct interaction between

the third and fourth domain, while the other states of the fourth module can be considered as

mediators of the indirect interactions. Furthermore, we can hypothesize that indirect interac-

tions might have a lower impact than direct interactions, which would suggest that the states

[R(E1, ∗, ∗, E4)], [R(∗, E2, ∗, E4)], [R(E1, E2, ∗, E4)], [R(E1, ∗, E3, E4)], [R(∗, E2, E3, E4)] and

[R(E1, E2, E3, E4)] only play a minor, or at least a less important role than [R(∗, ∗, E3, E4)].

In order to substantiate these considerations, the module will be analyzed in more detail using

the observability gramian Q. First the model equations are linearized and the observability

gramian is calculated with [R(∗, ∗, ∗, E4)] being the only output variable. Kinetic parameters
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and steady state concentrations are arbitrarily chosen out of a large interval comprising of sev-

eral orders of magnitude. With these parameters the observability gramian is evaluated. The

diagonal matrix elements correspond to the observation energies for unitary disturbance of all

individual model states. These values can be considered as measures to rate the observability

of the chosen system coordinates. For different sets of parameters these values also vary over

several orders of magnitude. Therefore, we took 50, 000 arbitrary parameter sets and observed

the relative difference of the resulting observation energies. The results of this analysis for all

states of the fourth module are depicted in Figure 5.3, which shows that in the majority of

cases the two states [R(∗, ∗, ∗, E4)] and [R(∗, ∗, E3, E4)] play the most important role. This

corresponds to our expectation that the state which mediates the direct interaction is more

important than those that mediate indirect interactions. If algebraic relations are formulated

for all independent cycles of the network, the six ODEs of this module that mediate indirect

effects can be eliminated. Thus, it can be stated that in general one should not replace states

that mediate direct process interactions. Similar results can be obtained by analyzing other

combinatorial network models with the same method.

In conjunction with the presented method to derive simple parameter-free slow manifold ap-

proximations, one can generate strongly reduced models of combinatorial networks and still

achieve a very good approximation quality. This will be further explained below by apply-

ing this method to the exactly reduced model of EGF and Insulin crosstalk, introduced in

Chapter 4.

5.2 Approximate Modeling Techniques

In the previous chapter we discussed the fact that in most cases model reduction is problematic

since the unreduced models are far too large to be generated. A direct generation of the

reduced model equations would be desirable. For exact model reduction we could present a

general method that allows for the direct generation of reduced models. For the approximate

reduction technique introduced above, an appropriate approximate modeling technique exists,

as developed by Koschorreck et al. [78]. The presented method is based on a formal division

of the complete reaction network into modules or layers, according to the occurring process

interactions. Different layers are characterized by the fact that they only interact via all-or-

none interactions. Thus, it can be guaranteed that each reaction cycle formed by two processes

of different layers is an independent cycle, as depicted in Figure 5.2. The modeling method

facilitates the direct generation of a reduced model which incorporates all equations ~Ψ(~x) = 0

which can be deduced from these independent cycles. A drawback of this method is that it

cannot cover reductions that are based on independent cycles within one layer. However, it

allows for a large class of physiological cases to be handled. Koschorreck et al. [78] showed that a

reduced model of early events in insulin signaling can be generated with this method consisting

of 214 ODEs, whereas a complete mechanistic model would comprise nearly 1.5 · 108 ODEs.

This enormous reduction shows the great practical use of the method. Since the described
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Figure 5.4: In this example system, the left module is the receptor layer which includes ligand binding
and receptor phosphorylation. The right module corresponds to the effector layer, where binding of E
to the phosphorylated binding site on R is described. Note that one could also compute [R(∗, P )] in
the receptor layer and transfer this quantity to the effector layer instead of [R(∗, P (∗))]. This choice
is up to the modeler. We suggest the transfer of [R(∗, P (∗))], since this variable is a macroscopic
quantity which corresponds to experimental readouts.

approximate reduced order modeling approach has not been developed in the framework of this

thesis, the reader is referred to the work of Koschorreck et al. [78] for further theoretic details.

In the following section, we will further explain the method by considering the simple example

depicted in Figure 5.1

5.2.1 Layer-Based Modeling Approach: An Example

In order to introduce the layer-based reduced modeling concept suggested by Koschorreck et

al. [78], the example shown in Figure 5.1 will be considered in order to illustrate the main fea-

tures. It is presumed that ligand binding unidirectionally influences receptor phosphorylation,

which in turn is an essential precondition for effector binding. Ligand binding and effector

binding do not interact directly. From this it follows that the reaction rates r1, r3 and r7 are

all parameterized by the same kinetic rate constants. The same holds true for the reaction

rates r5 and r6. The model can be split into two layers. The receptor layer describes ligand

binding and receptor phosphorylation, the effector layer describes effector binding (compare

Figure 5.4). There is an unidirectional interaction within the receptor layer and an all-or-none

interaction between the two layers. In this simple case, no further interactions occur within the

effector layer. The states of the reduced model generally represent lumped states, for instance

they correspond to sums of micro-states or, in special cases, to single micro-states. In the

example [R(0, 0)] and [R(L, 0)] correspond to micro-states. The lumped states [R(0, P (∗))] and
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[R(L, P (∗))] are pools for all species which are phosphorylated, incorporating the phosphory-

lated species that have recruited an effector. [R(∗, P )] and [R(∗, E)] are pools for species with

no regard to ligand binding. Mathematically, the states of the reduced model can be defined

as

[R(0, 0)] = [R(0, 0)]

[R(L, 0)] = [R(L, 0)]

[R(0, P (∗))] = [R(0, P )] + [R(0, E)]

[R(L, P (∗))] = [R(L, P )] + [R(L,E)]

[R(∗, P )] = [R(0, P )] + [R(L, P )]

[R(∗, E)] = [R(0, E)] + [R(L, P )].

(5.20)

Observe, that these six equations are linearly dependent. [R(∗, P )] or [R(∗, E)] can be expressed

by using a conservation relation

[R(0, P (∗))] + [R(L, P (∗))] = [R(∗, P )] + [R(∗, E)] = [R(∗, P (∗))]. (5.21)

The connection between the two layers, in other words, the information exchange, is given by

the two states [R(∗, P (∗))] and [R(∗, E)]. As depicted in Figure 5.4 the sum of phosphorylated

binding sites [R(∗, P (∗))] is passed to the effector layer, and the sum of occupied binding sites

[R(∗, E)] is passed to the receptor layer. If one compares the reactions of the reduced model

(Figure 5.4) and the reactions of the detailed model (Figure 5.1), one finds

v1 =r1 v2 =r2 v3 =r3 + r7

v4 =r4 vE=r5 + r6.

As already mentioned, the reaction rates that are merged together, namely r3 and r7 as well

as r5 and r6, have the same kinetic rate constants. Our model will provide equations for all

variables that are given in Equation 5.20. Hence, all the original variables occurring in the

new reaction rates vi have to be replaced by expressions which only comprise the new variables

defined in Equation 5.20. v1, v3 and vE can be written using the new state variables defined

in Equation 5.20. However, for an exact formulation of the rates v2 and v4, the micro-states

[R(0, P )] and [R(L, P )] are required. Due to the linear dependence of Equations 5.20 an exact

reconstruction of these micro-states is not possible. They can only be approximated by

[R(0, P )] =
[R(∗, P (∗))]− [R(∗, E)]

[R(∗, P (∗))]
[R(0, P (∗))]

[R(L, P )] =
[R(∗, P (∗))]− [R(∗, E)]

[R(∗, P (∗))]
[R(L, P (∗))].

(5.22)

The expression cI = [R(∗,P (∗))]−[R(∗,E)]
[R(∗,P (∗))] can be considered as a correction term corresponding

to the fraction of phosphorylated binding sites which are unoccupied. The correction term cI
can also be regarded as the percentage of phosphorylated but unliganded binding domains.
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Here, one takes the assumption that this percentage is not affected by L binding. This directly

corresponds to the assumption that L and E binding are independent, which is the basis of the

previously discussed model reduction technique. The rates v2 and v4 can be written as

v2 = k2[R(0, 0)]− k−2
[R(∗,P (∗))]−[R(∗,E)]

[R(∗,P (∗))] [R(0, P (∗))] (5.23)

v4 = k4[R(L, 0)]− k−4
[R(∗,P (∗))]−[R(∗,E)]

[R(∗,P (∗))] [R(L, P (∗))]. (5.24)

As occupied binding sites cannot be dephosphorylated, the concentration [R(0, P (∗))] has to

be multiplied by the correction term cI . The resulting model is given by

[R(0, 0)] = [R(∗, ∗)]− [R(L, 0)]− [R(0, P (∗))]− [R(L, P (∗))]
d[R(L, 0)]

dt
= v1 − v4

d[R(0, P (∗))]
dt

= v2 − v3

d[R(L, P (∗))]
dt

= v3 + v4

d[R(∗, E)]

dt
= vE.

(5.25)

These equations are equivalent to a complete mechanistic model of the system in which the

micro-state [R(L,E)] has been replaced by the algebraic equation 5.9. It is only given in a

linearly transformed state space representation. One can analytically show that the combination

of Equations 5.20 with Equation 5.9 allows for the reconstruction of all micro-states and leads

to the result given in Equations 5.22.

5.3 Example: EGF and Insulin Receptor Crosstalk

The exactly reduced model of EGF and insulin receptor crosstalk that has been introduced in

Chapter 4, still comprises 87 ODEs. The new approximate reduction methods facilitate the

further elimination of numerous model variables. In order to rate the approximation quality of

the method, the simulation results of the reduced model will be compared both with the exact

model as well as with a reduced model version obtained by Proper Orthogonal Decomposition

(POD).

5.3.1 Layer-Based Approach

The term layer-based approach has been introduced by Koschorreck et al. [78] and describes the

reduced order modeling approach discussed above. In this thesis, the same term will also be used

to characterize the related model reduction method. This method will be used to further reduce

the exactly reduced model of EGF and insulin receptor crosstalk, discussed in Chapter 4. Since

the exact model consisting of 87 ODEs has already been generated a model reduction approach
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Figure 5.5: In this Figure the simulation results obtained from the approximately reduced 41 ODE
model of EGF and insulin receptor crosstalk are compared with the simulation results of the exact 87
ODE model. For [EGF], [Ins] and [ERK] we have chosen the input functions depicted in Figure 4.8.
Both models show nearly the same dynamics for the chosen output variables.

is suggested. Many of the occurring binding and modification processes do not interact directly

with each other. Each pair of these processes forms at least one independent reaction cycle and

thus facilitates the formulation of algebraic equations ~Ψ(~x) = 0 as discussed above. However,

note that a great number of these cycles do not play a crucial role in the further reduction of

the network, since they have already been eliminated by the exact reduction. Let us consider

the phosphorylation of the two intracellular IR binding domains. These two phosphorylation

processes do not interact directly, however both processes are completely decoupled and part

of different interaction subgraphs. In the modeling step each of these interaction subgraphs

was separately translated into model equations. Consecutively, the reduced model does not

comprise any reaction cycle formed by the two phosphorylation processes. Only processes that

are part of the same interaction subgraph can be considered. We will focus on the subgraph

which describes direct binding of Grb2 to the EGF receptor. In this subgraph, EGF binding

and receptor phosphorylation do not interact directly. The corresponding independent reaction

cycle for EGF receptor (EGFR) monomers yields

[EGFR(0,#, 0)] · [EGFR(EGF,#, P )]− [EGFR(EGF,#, 0)] · [EGFR(0,#, P )] = 0. (5.26)

It has been shown earlier that an equivalent formulation is given by

[EGFR(∗,#, ∗)] · [EGFR(EGF,#, P )]− [EGFR(EGF,#, ∗)] · [EGFR(∗,#, P )] = 0. (5.27)
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Figure 5.6: Using the POD reduction approach the exact 87 ODE model can be reduced to a 15
ODE model. In this Figure the simulation results obtained from the exact and the POD reduced
model are compared. For [EGF], [Ins] and [ERK] we have again chosen the input functions depicted
in Figure 4.8. Both models show nearly the same dynamics for the chosen output variables. Thus,
POD facilitates the elimination of a higher number of ODEs. However, the reduced model cannot be
modularized like the one obtained by the layer-based method.

This formulation is more convenient for the reduction of the considered model, since it also

comprises occupancy or occurrence levels. These equations can only be used for model reduction

if all occurring variables are state variables of the exactly reduced model. However, in the

exactly reduced model, [EGFR(∗,#, ∗)] has been eliminated due to the existing conservation

relation for the EGF receptor

[EGFR(∗,#, ∗).∗] = 2[EGFR2(∗,#, ∗, ∗,#, ∗)] + [EGFR(∗,#, ∗)]. (5.28)

The inclusion of this conservation relation yields as a final formulation

[EGFR(EGF,#, P )] =
[EGFR(EGF,#, ∗)] · [EGFR(∗,#, P )]

[EGFR(∗,#, ∗).∗]− 2[EGFR2(∗,#, ∗, ∗,#, ∗)]
. (5.29)

This equation has already been solved for the variable [EGFR(EGF,#, P )] which will be

replaced in the model. Analogously, one can formulate further algebraic relations for other

independent reaction cycles of EGFR monomers such as in the example

[EGFR(EGF,#, Grb2)] =
[EGFR(EGF,#, P )] · [EGFR(∗,#, Grb2)]

[EGFR(∗,#, P )]
. (5.30)
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Figure 5.7: Comparison of the exact 87 ODE model with the two reduced models obtained by the
layer-based approach and by POD. As input functions we have chosen [EGF]=50

(
sin(1

8 t) + 1
)

and
[Ins]=50

(
sin( 1

14 t) + 1
)
. The input function of [ERK] is the same as before (see Figure 4.8). The

simulation results show that the layer-based model provides a much better approximation of the real
system dynamics than the POD model.

The same approach also facilitates the replacement of dimeric state variables such as

[EGFR2(EGF,#, P, ∗,#, ∗)] =
[EGFR2(EGF,#, ∗, ∗,#, ∗)] · [EGFR2(∗,#, P, ∗,#, ∗)]

2[EGFR2(∗,#, ∗, ∗,#, ∗)]
.

(5.31)

Following this approach, 46 algebraically independent equations can be formulated. Thus,

the exact model can be reduced from 87 to 41 ODEs. As it can be seen in Figure 5.5 the

approximation quality is fairly accurate and emphasizes the utility of the developed approach.

5.3.2 Layer-Based Approach vs. POD

A widely used model reduction approach for nonlinear systems is the so-called proper orthogonal

decomposition. The method has already been discussed from a mathematical point of view in

Chapter 2. This approach is based on a singular value decomposition of a matrix X which is

composed of snapshots of the state trajectory ~x(tk) with k = 1...N . The main drawback of

this method is that the complete model has to be simulated and then transformed, which can

be very complex. Furthermore, a good approximation quality can only be guaranteed for the

input functions that are used to generate the trajectory snapshots for the matrix X . In the
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considered example, we again use step functions for [EGF ] and [Ins] and a bell-shaped curve

for activated ERK ([ERK]) to generate X .

The singular value decomposition of the resulting matrix X indicates that one can reduce the

model to only 15 ODEs. A comparison of the exact 87 ODE model and the reduced 15 ODE

model shows that the reduced model accurately describes the system behavior for the defined

inputs (see Figure 5.6). However, the approximation error can grow much larger if the reduced

model is stimulated with other input signals. As an alternative input signal we choose an oscil-

lating EGF and insulin concentration. The ERK signal has remained unchanged. In Figure 5.7

the simulation results of the exact model and the two reduced models are compared. The model

deduced with the layer-based approach provides a much more accurate approximation of the

real system behavior than the approximation of the 15 ODE model resulting from POD.

5.4 Conclusions

The approximate reduction method presented in this chapter is based on the derivation of slow

manifold approximations and therefore can be considered as a time-scale separation method.

The derived algebraic equations are parameter-free and can be analytically solved due to their

simple structure. Furthermore, the approximation error can be quantified in a very simple

manner, and it can be shown that the stationary error is zero for all reaction networks fulfilling

the Wegscheider conditions as discussed in Chapter 3.

The numerical analysis of observability gramians for linearized model equations additionally

indicates that the derived algebraic equations should be used to replace those variables that

solely mediate indirect interactions. Thus, the proposed method combines a time-scale based

approach with an observability based one. The considered example of EGF and Insulin receptor

crosstalk shows that this method provides excellent approximation qualities and leads to even

better results than the POD method.



109

Chapter 6

Conclusions and Outlook

Mathematical models of biochemical reaction networks play an increasing role in cytological

research. Most of the underlying reaction networks are far too complex to facilitate an intuitive

understanding. In this thesis, the focus is on ODE based dynamic modeling of receptor medi-

ated signal transduction in mammalian cells, such as insulin, epidermal growth factor (EGF) or

tumor necrosis factor (TNF) signaling. These systems are of special interest since malfunctions

within these signaling cascades can cause maladies such as cancer, diabetes mellitus or neurode-

generative disorders [92]. These networks share some common features. Ligand binding to a

receptor triggers conformational changes that facilitate receptor dimerization and/or phospho-

rylation of numerous residues. The subsequent formation of multiprotein signaling complexes on

these receptors and their scaffolding adaptor proteins initiates a variety of signaling pathways.

The main problem that occurs in modeling these networks using common modeling strategies

is the enormous number of feasible multiprotein species and the high complexity of the related

reaction networks. The number of multiprotein species and reactions grows exponentially with

the number of binding domains and can easily reach several millions or even more [56, 30].

The main contribution of this thesis for ODE based modeling of signal transduction pathways

is the provision of new model reduction and reduced order modeling techniques that allow for

the generation of manageable reduced models, which account for the dynamic effects of com-

binatorial complexity. A detailed analysis of these combinatorial reaction networks revealed

that these systems are highly restricted by elementary thermodynamic constraints. The math-

ematical constraints that follow from the principle of detailed balance or microscopic reversibil-

ity [101, 102] reduce the number of kinetic model parameters and imply certain restrictions on

interactions among binding and modification processes.

These analyses build the basis for the developed model reduction and reduced order modeling

approaches. For common input and output signals, the number of unobservable and uncon-

trollable model states depends on the occurring process interactions, and tend to be fairly high

for a complete mechanistic model. The elimination of uncontrollable and unobservable state

variables can be achieved by a linear and hierarchically structured state space transformations,

which additionally facilitate a modularization of the model equations. Since this approach does
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not affect the input/output behavior of the system, it is often referred to as an exact model

reduction approach. Due to the enormous size of many real signaling cascades the generation

of a complete mechanistic model and its subsequent reduction is not practical. An alternative

approach is directly based on the process interaction pattern of the considered system. All

occurring process interactions can be integrated in an interaction graph which is subsequently

split into independent interaction subgraphs. If these subgraphs are modeled individually, the

resulting ODE system contains the same information as the exactly reduced one.

Process interactions also play an important role in the approximate reduction approach intro-

duced here. This approach combines time-scale based and observability based model reduction

techniques and is adapted to the special requirements of combinatorial reaction networks. If

two arbitrary molecular processes do not directly interact with each other this information

can be used to formulate slow manifold approximations with good convergence properties. A

projection of the system trajectories onto the slow manifold approximation provides a reduced

model structure.

Both the exact and the approximate techniques are used to generate a reduced model of EGF

and insulin receptor crosstalk. These methods allow for the reduction of the complete mech-

anistic model with 5,182 ODEs to only 41. Simulation studies show that the approximation

quality that can be achieved using these methods is very good.

Thus, the results of this thesis provide new and powerful tools for dynamic modeling of com-

binatorial reaction networks such as those occurring in signal transduction. The performed

analyses of thermodynamic constraints in these networks yield descriptive interpretations of

these restrictions on the level of process interactions. Furthermore, we discuss a new and

systematic approach to parameterize combinatorial reaction networks in a thermodynamically

consistent manner. The introduced reduction techniques facilitate the generation of fairly re-

duced and modularized dynamic models which in general have a negligible approximation error.

The modular structure of the resulting models also reduces the complexity of parameter esti-

mation. Furthermore, the availability of an alternative reduced order modeling approach for

both exact and approximate reduction techniques also facilitates the handling of very large and

complex signaling networks. This property is of immense practical relevance since most real

signaling cascades are too complex to be translated into a complete mechanistic model to be

subsequently reduced.

Several promising extensions of the approximate reduction technique as well as the layer-based

modeling approach are possible. In analogy to the rapid equilibrium based derivation of alge-

braic equations ~Ψ(~x) = 0 for independent reaction cycles, similar equations can be derived for

mutually interacting processes. It is quite obvious that this extended reduction approach will

have a smaller scope of application, but may still be helpful under certain conditions. The layer-

based reduced order modeling approach, as introduced by Koschorreck et al. [78], does not cover

all reductions possible by the proposed approximate reduction technique. The development of

an extended layer-based approach which also incorporates the possible reductions within one

layer would be a desirable improvement. Finally, all the developed techniques should be com-

bined and implemented in software tools like ProMoT, BioNetGen or Copasi [59, 13, 50].
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All discussed reduction or reduced modeling procedures follow a systematic algorithm which

therefore can be automated without difficulty. The integration of the developed methods into

a commonly used software tool which also supports modeling of metabolic pathways can also

be very helpful to model the interactions between metabolic and signaling pathways.
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