68 research outputs found

    Proximity Effect, Andreev Reflections, and Charge Transport in Mesoscopic Superconducting-Semiconducting Heterostructures

    Full text link
    In the quasi-twodimensional (Q2D) electron gas of an InAs channel between an AlSb substrate and superconducting Niobium layers the proximity effect induces a pair potential so that a Q2D mesoscopic superconducting-normal-superconducting (SNS) junction forms in the channel. The pair potential is calculated with quasiclassical Green's functions in the clean limit. For such a junction alternating Josephson currents and current-voltage characteristics (CVCs) are computed, using the non-equilibrium quasiparticle wavefunctions which solve the time-dependent Bogoliubov-de Gennes Equations. The CVCs exhibit features found experimentally by the Kroemer group: A steep rise of the current at small voltages ("foot") changes at a "corner current" to a much slower increase of current with higher voltages, and the zero-bias differential resistance increases with temperature. Phase-coherent multiple Andreev reflections and the associated Cooper pair transfers are the physical mechanisms responsible for the oscillating Josephson currents and the CVCs. Additional experimental findings not reproduced by the theory require model improvements, especially a consideration of the external current leads which should give rise to hybrid quasiparticle/collective mode excitations.Comment: 8 pages, 4 figures (consisting of 5 .ps-files), added referenc

    Coherent effects in double-barrier Josephson junctions

    Full text link
    The general solution for ballistic electronic transport through double-barrier Josephson junctions is derived. We show the existence of a regime of phase-coherent transport in which the supercurrent is proportional to the single barrier transparency and the way in which this coherence is destroyed for increasing interlayer thickness. The quasiparticle dc current at arbitrary voltage is determined.Comment: 4 pages, 2 figures, submitted to Phys. Rev.

    Magnetic field influence on the proximity effect in semiconductor - superconductor hybrid structures and their thermal conductance

    Get PDF
    We show that a magnetic field can influnce the proximity effect in NS junctions via diamagnetic screening current flowing in the superconductor. Using ballistic quasi-one-dimensional (Q1D) electron channels as an example, we show that the supercurrent flow shifts the proximity-induced minigap in the excitation spectrum of a Q1D system from the Fermi level to higher quasiparticle energies. Thermal conductance of a Q1D channel (normalized by that of a normal Q1D ballistic system) is predicted to manifest such a spectral feature as a nonmonotonic behavior at temperatures corresponding to the energy of excitation into the gapful part of the spectrum.Comment: 5 pages, 3 figures, revised version with a new titl

    Angle dependence of Andreev scattering at semiconductor-superconductor interfaces

    Get PDF
    We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface, generalizing the one-dimensional theory of Blonder, Tinkham and Klapwijk. An increase of the momentum parallel to the interface leads to suppression of the probability of Andreev reflection and increase of the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the semiconductor and the superconductor the angles of incidence and transmission are related according to the well-known Snell's law in optics. As a consequence there is a critical angle of incidence above which only normal reflection exists. For two and three-dimensional interfaces a lower excess current compared to ballistic transport with perpendicular incidence is found. Thus, the one-dimensional BTK model overestimates the barrier strength for two and three-dimensional interfaces.Comment: 8 pages including 3 figures (revised, 6 references added

    DC current through a superconducting two-barrier system

    Full text link
    We analyze the influence of the structure within a SNS junction on the multiple Andreev resonances in the subgap I-V characteristics. Coherent interference processes and incoherent propagation in the normal region are considered. The detailed geometry of the normal region where the voltage drops in superconducting contacts can lead to observable effects in the conductance at low voltages.Comment: 11 pages, including 7 postscript file

    Supercurrents through gated superconductor-normal-metal-superconductor contacts: the Josephson-transistor

    Full text link
    We analyze the transport through a narrow ballistic superconductor-normal- metal-superconductor Josephson contact with non-ideal transmission at the superconductor-normal-metal interfaces, e.g., due to insulating layers, effective mass steps, or band misfits (SIN interfaces). The electronic spectrum in the normal wire is determined through the combination of Andreev- and normal reflection at the SIN interfaces. Strong normal scattering at the SIN interfaces introduces electron- and hole-like resonances in the normal region which show up in the quasi-particle spectrum. These resonances have strong implications for the critical supercurrent IcI_c which we find to be determined by the lowest quasi-particle level: tuning the potential μx0\mu_{x0} to the points where electron- and hole-like resonances cross, we find sharp peaks in IcI_{\rm c}, resulting in a transitor effect. We compare the performance of this Resonant Josephson-Transistor (RJT) with that of a Superconducting Single Electron Transistor (SSET).Comment: to appear in PRB, 11 pages, 9 figure

    Nonequilibrium Josephson effect in mesoscopic ballistic multiterminal SNS junctions

    Full text link
    We present a detailed study of nonequilibrium Josephson currents and conductance in ballistic multiterminal SNS-devices. Nonequilibrium is created by means of quasiparticle injection from a normal reservoir connected to the normal part of the junction. By applying a voltage at the normal reservoir the Josephson current can be suppressed or the direction of the current can be reversed. For a junction longer than the thermal length, LξTL\gg\xi_T, the nonequilibrium current increases linearly with applied voltage, saturating at a value equal to the equilibrium current of a short junction. The conductance exhibits a finite bias anomaly around eVvF/LeV \sim \hbar v_F/L. For symmetric injection, the conductance oscillates 2π2\pi-periodically with the phase difference ϕ\phi between the superconductors, with position of the minimum (ϕ=0\phi=0 or π\pi) dependent on applied voltage and temperature. For asymmetric injection, both the nonequilibrium Josephson current and the conductance becomes π\pi-periodic in phase difference. Inclusion of barriers at the NS-interfaces gives rise to a resonant behavior of the total Josephson current with respect to junction length with a period λF\sim \lambda_F. Both three and four terminal junctions are studied.Comment: 21 pages, 19 figures, submitted to Phys. Rev.
    corecore