255 research outputs found

    Hormonal regulation of alveolarization: structure-function correlation

    Get PDF
    BACKGROUND: Dexamethasone (Dex) limits and all-trans-retinoic acid (RA) promotes alveolarization. While structural changes resulting from such hormonal exposures are known, their functional consequences are unclear. METHODS: Neonatal rats were treated with Dex and/or RA during the first two weeks of life or were given RA after previous exposure to Dex. Morphology was assessed by light microscopy and radial alveolar counts. Function was evaluated by plethysmography at d13, pressure volume curves at d30, and exercise swim testing and arterial blood gases at both d15 and d30. RESULTS: Dex-treated animals had simplified lung architecture without secondary septation. Animals given RA alone had smaller, more numerous alveoli. Concomitant treatment with Dex + RA prevented the Dex-induced changes in septation. While the results of exposure to Dex + RA were sustained, the effects of RA alone were reversed two weeks after treatment was stopped. At d13, Dex-treated animals had increased lung volume, respiratory rate, tidal volume, and minute ventilation. On d15, both RA- and Dex-treated animals had hypercarbia and low arterial pH. By d30, the RA-treated animals resolved this respiratory acidosis, but Dex-treated animals continued to demonstrate blood gas and lung volume abnormalities. Concomitant RA treatment improved respiratory acidosis, but failed to normalize Dex-induced changes in pulmonary function and lung volumes. No differences in exercise tolerance were noted at either d15 or d30. RA treatment after the period of alveolarization also corrected the effects of earlier Dex exposure, but the structural changes due to RA alone were again lost two weeks after treatment. CONCLUSION: We conclude that both RA- and corticosteroid-treatments are associated with respiratory acidosis at d15. While RA alone-induced changes in structure andrespiratory function are reversed, Dex-treated animals continue to demonstrate increased respiratory rate, minute ventilation, tidal and total lung volumes at d30. Concomitant treatment with Dex + RA prevents decreased septation induced by Dex alone and results in correction of hypercarbia. However, these animals continue to have abnormal pulmonary function and lung volumes. Increased septation as a result of RA treatment alone is reversed upon discontinuation of treatment. These data suggest that Dex + RA treatment results in improved gas exchange likely secondary to normalized septation

    An electrochromic ionic liquid: design, characterisation and performance in a solid state platform

    Get PDF
    This work describes the synthesis and characteristics of a novel electrochromic ionic liquid (IL) based on a phosphonium core tethered to a viologen moiety. When integrated into a solid-state electrochromic platform, the viologen modified IL behaved as both the electrolyte and the electrochromic material. Platform fabrication was achieved through in situ photo-polymerisation and encapsulation of this novel IL within a hybrid sol-gel. Important parameters of the platform performance, including its coloration efficiency, switching kinetics and optical properties were characterised using UV/Vis spectroscopy and cyclic voltammetry in tandem. The electrochromic platform exhibits a coloration efficiency of 10.72 cm2C-1, and a varied optical output as a function of the incident current. Despite the rather viscous nature of the material, the platform exhibited approximately two orders of magnitude faster switching kinetics (221 seconds to reach 95 % absorbance) when compared to previously reported electrochromic ILs (18,000 seconds)

    Stromal IFN-γR-Signaling Modulates Goblet Cell Function During Salmonella Typhimurium Infection

    Get PDF
    Enteropathogenic bacteria are a frequent cause of diarrhea worldwide. The mucosal defenses against infection are not completely understood. We have used the streptomycin mouse model for Salmonella Typhimurium diarrhea to analyze the role of interferon gamma receptor (IFN-γR)-signaling in mucosal defense. IFN-γ is known to contribute to acute S. Typhimurium diarrhea. We have compared the acute mucosal inflammation in IFN-γR-/- mice and wild type animals. IFN-γR-/- mice harbored increased pathogen loads in the mucosal epithelium and the lamina propria. Surprisingly, the epithelium of the IFN-γR-/- mice did not show the dramatic “loss” of mucus-filled goblet cell vacuoles, a hallmark of the wild type mucosal infection. Using bone marrow chimeric mice we established that IFN-γR-signaling in stromal cells (e.g. goblet cells, enterocytes) controlled mucus excretion/vacuole loss by goblet cells. In contrast, IFN-γR-signaling in bone marrow-derived cells (e.g. macrophages, DCs, PMNs) was required for restricting pathogen growth in the gut tissue. Thus IFN-γR-signaling influences different mucosal responses to infection, including not only pathogen restriction in the lamina propria, but, as shown here, also goblet cell function

    Objective comparison of particle tracking methods

    Get PDF
    Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers

    Homeostatic Regulation of Salmonella-Induced Mucosal Inflammation and Injury by IL-23

    Get PDF
    IL-12 and IL-23 regulate innate and adaptive immunity to microbial pathogens through influencing the expression of IFN-γ, IL-17, and IL-22. Herein we define the roles of IL-12 and IL-23 in regulating host resistance and intestinal inflammation during acute Salmonella infection. We find that IL-23 alone is dispensable for protection against systemic spread of bacteria, but synergizes with IL-12 for optimal protection. IL-12 promotes the production of IFN-γ by NK cells, which is required for resistance against Salmonella and also for induction of intestinal inflammation and epithelial injury. In contrast, IL-23 controls the severity of inflammation by inhibiting IL-12A expression, reducing IFN-γ and preventing excessive mucosal injury. Our studies demonstrate that IL-23 is a homeostatic regulator of IL-12-dependent, IFN-γ-mediated intestinal inflammation

    Th17 Cytokines and the Gut Mucosal Barrier

    Get PDF
    Local immune responses serve to contain infections by pathogens to the gut while preventing pathogen dissemination to systemic sites. Several subsets of T cells in the gut (T-helper 17 cells, γδ T cells, natural killer (NK), and NK-T cells) contribute to the mucosal response to pathogens by secreting a subset of cytokines including interleukin (IL)-17A, IL-17F, IL-22, and IL-26. These cytokines induce the secretion of chemokines and antimicrobial proteins, thereby orchestrating the mucosal barrier against gastrointestinal pathogens. While the mucosal barrier prevents bacterial dissemination from the gut, it also promotes colonization by pathogens that are resistant to some of the inducible antimicrobial responses. In this review, we describe the contribution of Th17 cytokines to the gut mucosal barrier during bacterial infections

    Gene duplication and fragmentation in the zebra finch major histocompatibility complex

    Get PDF
    BACKGROUND: Due to its high polymorphism and importance for disease resistance, the major histocompatibility complex (MHC) has been an important focus of many vertebrate genome projects. Avian MHC organization is of particular interest because the chicken Gallus gallus, the avian species with the best characterized MHC, possesses a highly streamlined minimal essential MHC, which is linked to resistance against specific pathogens. It remains unclear the extent to which this organization describes the situation in other birds and whether it represents a derived or ancestral condition. The sequencing of the zebra finch Taeniopygia guttata genome, in combination with targeted bacterial artificial chromosome (BAC) sequencing, has allowed us to characterize an MHC from a highly divergent and diverse avian lineage, the passerines. RESULTS: The zebra finch MHC exhibits a complex structure and history involving gene duplication and fragmentation. The zebra finch MHC includes multiple Class I and Class II genes, some of which appear to be pseudogenes, and spans a much more extensive genomic region than the chicken MHC, as evidenced by the presence of MHC genes on each of seven BACs spanning 739 kb. Cytogenetic (FISH) evidence and the genome assembly itself place core MHC genes on as many as four chromosomes with TAP and Class I genes mapping to different chromosomes. MHC Class II regions are further characterized by high endogenous retroviral content. Lastly, we find strong evidence of selection acting on sites within passerine MHC Class I and Class II genes. CONCLUSION: The zebra finch MHC differs markedly from that of the chicken, the only other bird species with a complete genome sequence. The apparent lack of synteny between TAP and the expressed MHC Class I locus is in fact reminiscent of a pattern seen in some mammalian lineages and may represent convergent evolution. Our analyses of the zebra finch MHC suggest a complex history involving chromosomal fission, gene duplication and translocation in the history of the MHC in birds, and highlight striking differences in MHC structure and organization among avian lineages

    Delineation of the Innate and Adaptive T-Cell Immune Outcome in the Human Host in Response to Campylobacter jejuni Infection

    Get PDF
    BACKGROUND: Campylobacter jejuni is the most prevalent cause of bacterial gastroenteritis worldwide. Despite the significant health burden this infection presents, molecular understanding of C. jejuni-mediated disease pathogenesis remains poorly defined. Here, we report the characterisation of the early, innate immune response to C. jejuni using an ex-vivo human gut model of infection. Secondly, impact of bacterial-driven dendritic cell activation on T-cell mediated immunity was also sought. METHODOLOGY: Healthy, control paediatric terminal ileum or colonic biopsy tissue was infected with C. jejuni for 8-12 hours. Bacterial colonisation was followed by confocal microscopy and mucosal innate immune responses measured by ELISA. Marked induction of IFNγ with modest increase in IL-22 and IL-17A was noted. Increased mucosal IL-12, IL-23, IL-1β and IL-6 were indicative of a cytokine milieu that may modulate subsequent T-cell mediated immunity. C. jejuni-driven human monocyte-derived dendritic cell activation was followed by analyses of T cell immune responses utilising flow cytometry and ELISA. Significant increase in Th-17, Th-1 and Th-17/Th-1 double-positive cells and corresponding cytokines was observed. The ability of IFNγ, IL-22 and IL-17 cytokines to exert host defence via modulation of C. jejuni adhesion and invasion to intestinal epithelia was measured by standard gentamicin protection assay. CONCLUSIONS: Both innate and adaptive T cell-immunity to C. jejuni infection led to the release of IFNγ, IL-22 and IL-17A; suggesting a critical role for this cytokine triad in establishing host anti-microbial immunity during the acute and effectors phase of infection. In addition, to their known anti-microbial functions; IL-17A and IL-17F reduced the number of intracellular C. jejuni in intestinal epithelia, highlighting a novel aspect of how IL-17 family members may contribute to protective immunity against C. jejuni
    corecore