3,656 research outputs found

    Quasi-Continuous Symmetries of Non-Lie Type

    Full text link
    We introduce a smooth mapping of some discrete space-time symmetries into quasi-continuous ones. Such transformations are related with q-deformations of the dilations of the Euclidean space and with the non-commutative space. We work out two examples of Hamiltonian invariance under such symmetries. The Schrodinger equation for a free particle is investigated in such a non-commutative plane and a connection with anyonic statistics is found.Comment: 18 pages, LateX, 3 figures, Submitted Found. Phys., PACS: 03.65.Fd, 11.30.E

    Molecular dissection of the mechanism by which EWS/FLI expression compromises actin cytoskeletal integrity and cell adhesion in Ewing sarcoma.

    Get PDF
    Ewing sarcoma is the second-most-common bone cancer in children. Driven by an oncogenic chromosomal translocation that results in the expression of an aberrant transcription factor, EWS/FLI, the disease is typically aggressive and micrometastatic upon presentation. Silencing of EWS/FLI in patient-derived tumor cells results in the altered expression of hundreds to thousands of genes and is accompanied by dramatic morphological changes in cytoarchitecture and adhesion. Genes encoding focal adhesion, extracellular matrix, and actin regulatory proteins are dominant targets of EWS/FLI-mediated transcriptional repression. Reexpression of genes encoding just two of these proteins, zyxin and α5 integrin, is sufficient to restore cell adhesion and actin cytoskeletal integrity comparable to what is observed when the EWS/FLI oncogene expression is compromised. Using an orthotopic xenograft model, we show that EWS/FLI-induced repression of α5 integrin and zyxin expression promotes tumor progression by supporting anchorage-independent cell growth. This selective advantage is paired with a tradeoff in which metastatic lung colonization is compromised

    A new orthogonalization procedure with an extremal property

    Get PDF
    Various methods of constructing an orthonomal set out of a given set of linearly independent vectors are discussed. Particular attention is paid to the Gram-Schmidt and the Schweinler-Wigner orthogonalization procedures. A new orthogonalization procedure which, like the Schweinler- Wigner procedure, is democratic and is endowed with an extremal property is suggested.Comment: 7 pages, latex, no figures, To appear in J. Phys

    Anharmonic effects on a phonon number measurement of a quantum mesoscopic mechanical oscillator

    Get PDF
    We generalize a proposal for detecting single phonon transitions in a single nanoelectromechanical system (NEMS) to include the intrinsic anharmonicity of each mechanical oscillator. In this scheme two NEMS oscillators are coupled via a term quadratic in the amplitude of oscillation for each oscillator. One NEMS oscillator is driven and strongly damped and becomes a transducer for phonon number in the other measured oscillator. We derive the conditions for this measurement scheme to be quantum limited and find a condition on the size of the anharmonicity. We also derive the relation between the phase diffusion back-action noise due to number measurement and the localization time for the measured system to enter a phonon number eigenstate. We relate both these time scales to the strength of the measured signal, which is an induced current proportional to the position of the readout oscillator.Comment: 13 pages, 2 figure

    Serum Heat Shock Protein 27 and Diabetes Complications in the EURODIAB Prospective Complications Study : A Novel Circulating Marker for Diabetic Neuropathy

    Get PDF
    OBJECTIVE—Heat shock protein 27 (HSP27) is a member of the small heat shock protein family of proteins. HSP27 expression is enhanced in target tissues of diabetic microvascular complications, and changes in circulating serum HSP27 levels (sHSP27) have been reported in patients with macrovascular disease. We investigated whether sHSP27 levels were associated with micro- and macrovascular complications in type 1 diabetic patients

    SIC~POVMs and Clifford groups in prime dimensions

    Full text link
    We show that in prime dimensions not equal to three, each group covariant symmetric informationally complete positive operator valued measure (SIC~POVM) is covariant with respect to a unique Heisenberg--Weyl (HW) group. Moreover, the symmetry group of the SIC~POVM is a subgroup of the Clifford group. Hence, two SIC~POVMs covariant with respect to the HW group are unitarily or antiunitarily equivalent if and only if they are on the same orbit of the extended Clifford group. In dimension three, each group covariant SIC~POVM may be covariant with respect to three or nine HW groups, and the symmetry group of the SIC~POVM is a subgroup of at least one of the Clifford groups of these HW groups respectively. There may exist two or three orbits of equivalent SIC~POVMs for each group covariant SIC~POVM, depending on the order of its symmetry group. We then establish a complete equivalence relation among group covariant SIC~POVMs in dimension three, and classify inequivalent ones according to the geometric phases associated with fiducial vectors. Finally, we uncover additional SIC~POVMs by regrouping of the fiducial vectors from different SIC~POVMs which may or may not be on the same orbit of the extended Clifford group.Comment: 30 pages, 1 figure, section 4 revised and extended, published in J. Phys. A: Math. Theor. 43, 305305 (2010

    Non-Markovian quantum trajectories for spectral detection

    Full text link
    We present a formulation of non-Markovian quantum trajectories for open systems from a measurement theory perspective. In our treatment there are three distinct ways in which non-Markovian behavior can arise; a mode dependent coupling between bath (reservoir) and system, a dispersive bath, and by spectral detection of the output into the bath. In the first two cases the non-Markovian behavior is intrinsic to the interaction, in the third case the non-Markovian behavior arises from the method of detection. We focus in detail on the trajectories which simulate real-time spectral detection of the light emitted from a localized system. In this case, the non-Markovian behavior arises from the uncertainty in the time of emission of particles that are later detected. The results of computer simulations of the spectral detection of the spontaneous emission from a strongly driven two-level atom are presented

    Stochastic wave function method for non-Markovian quantum master equations

    Get PDF
    A generalization of the stochastic wave function method to quantum master equations which are not in Lindblad form is developed. The proposed stochastic unravelling is based on a description of the reduced system in a doubled Hilbert space and it is shown, that this method is capable of simulating quantum master equations with negative transition rates. Non-Markovian effects in the reduced systems dynamics can be treated within this approach by employing the time-convolutionless projection operator technique. This ansatz yields a systematic perturbative expansion of the reduced systems dynamics in the coupling strength. Several examples such as the damped Jaynes Cummings model and the spontaneous decay of a two-level system into a photonic band gap are discussed. The power as well as the limitations of the method are demonstrated.Comment: RevTex, 14 pages, 9 figures, uses multico
    corecore